
Lecture – 28

Artin-Rees Lemma

Gyanam Paramam Dhyeyam: Knowledge is supreme.

Okay, so now let us come to Artin-Rees lemma. So this is Artin-Rees lemma. So it's A Noetherian, A is 
an ideal A. M is finite A-module and N is a sub module of M, A-sub module. And we take this filtration 

on M which is given by the powers of A, so that is AnM , this you know, this is A adic on M and we take 

this induced filtration, i.e., you take this AnM  and intersect with N. so I can see that this filtration on the 

sub module. And I want to prove that this is A-adic.

So then the filtration AnM  intersection N, M in N is A-adic filtration of, on N, on the sub module. So, 

proof. So for about the filtration, to prove some filtration is A-adic, and the lemma says that we have to 
check that the module, the graded module is finite or the corresponding graded ring. So what do the 

corresponding graded ring is precisely A’ is our ring direct some An, M ’ is AnM  and N ’ is direct some

AnM∩N . and we know that because this filtration AnM  is a-adic on M, this N ’ is a finite A’ module 

since AnM , this filtration is A-adic on M and by lemma. So by lemma.
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And note that this ring A prime, ideal A is in the noetherian ring A, so ideal a is finitely generated. So let's

say it generated by a1 to ar and therefore we have a map from the polynomial being A [X1 ,…, X r ] to A’. 
Namely if I give you a map on a polynomial ring, so many variables with base ring A, then I just have to 



give values in a indeterminate. So let X i map to a i. This is also algebra, this is algebra and this map is 

clearly subjective. Because A’ has an algebra over A generated by the first component. It's a standard 

graded algebra. See, this is A direct some A and so on. So it is generated by the degree of one elements. 
So anyway this map is A algebra homomorphism which is surjective. Therefore, by Hilbert basis 
theorem, because this is Noetherian, the homomorphic image of a Noetherian ring is Noetherian. So by 

Hilbert basis theorem, A [X1 ,…, X r ] is Noetherian and hence A’ is Noetherian. So A’ is a Noetherian 

ring and M ’ is a finite module over A’, therefore, M ’ is finitely generated. So M ’ is a finite A’ module. 

And this M ’ is a sub module of that. It's a finite module in a Noetherian ring so M ’ is Noetherian. 

Therefore N ’ is finite A’ module and that means by lemma, the filtration a power n M induced filtration 

on N is A-adic.
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Okay, now let me deduce some corollaries from here. So, corollary 1, that is usually called Krull's 
intersection theorem. Okay, so A noetherian , a even ideal in A and M is a finite A-module and N is the 

intersection of all AnM , all the terms this filtration, A-adic filtration. A’. Then, A N  is equal to N. Proof: 

We got N, I want to prove, start with N, obviously if I take A’ intersection with N, because only the 

intersection of all of them, this is same. This is a bigger set than N, so when you intersect, you get the 

same thing. But for large n, this filtration is A-adic means, this means it is A An−1 and intersection and 

for large n. But again, this is n. So this is same as A N . That is what we wanted to prove. Equal to N. 

Okay, Corollary 2. Actually this is called Krull's intersection theorem. This is also, some people call it 
Krull's intersection theorem. So assumptions as in Corollary 1, and also I will assume that this ideal a is 
containing Jacobson radical of A. This is standard notation for the Jacobson radical of A. Then, 



intersection AnM , this is 0. This is immediate form Corollary 1 because we know A N  equal to N. we 

know N is sub module of finite module over a noetherian ring. So it is noetherian. And Nakayama lemma,
with Corollary 1, will tell then N is 0, then if we can say this is 0. 
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so let me just write, so proof, by Corollary 1, A N  equal to N and N is finitely generated, a contains of 
some articles, so on. So therefore, N is 0 by Nakayama lemma.  Okay. So next Corollary, this is a special 

case of Corollary 2. Namely, suppose you have an ideal A contained in mA, the Jacobson radical and of 

course we are assuming A is noetherian. Then, intersection An, this is 0. See, this Corollaries are very 

important when one studies, you see, if each filtration will give the topology on the ring A.
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 metric even and then we went on to study this metric space, so when completed the metric and then you, 
on the metric completion, there is a ring structure and then study this complete local ring, needs a 
complete ring, complete local ring. And the properties of this ring associated with the properties of A, it's 
an interesting study which will also give some analytic considerations, okay. So now let us get back to 
our lemma which we wanted to prove. So the lemma we wanted to prove was, we have an exact thing. So 
proof of the lemma I am writing. So we had given an exact sequence of, short exact sequence of A 
modules. A is local now and M is a maximal ideal and Q is M primary ideal. So such exact sequence. 

And we have given the middle one is non zero. So first is also we can, we may assume the M ’ is non 

zero, otherwise nothing to prove. If M ’ is 0, then this will be heteromorphic  and then they are the same 

polynomials so the degree will definitely drop. So we can assume M ’ is also non zero. Now when we 

need to ensure the sequence with 
A

qn+1 , then you get tensor product is not a left exact so we will only get 

from the right side. So we'll get an exact sequence like this. 
M ’

qn+1M ’  to 
M

qn+1M
 to 

M ‘’

qn+1M ‘’  to 0. This is 

exact. But to make it exact, I will intersect, I will go further module, so to make it exact I will have to 

intersect this with M ’. Yes, so we'll get exactly, let me write this, 0 to 
M ’

M '∩qn+1M
to 

M

qn+1M
to

M ‘’

qn+1M ‘’ to 0. When you compare the lengths and all, I think we came to this equation also last time. We 

put this is equal to, we put M n
’  to be equal to M ’

∩qnM . so from here we will get equation like 

this. Pq , again, alternating. So Pq(M )(n)=Pq(M
‘ ’
)+ f n , where f n , I will put f n  is length 



of 
M ’

M n+1
’

. And that also has a finite length because you see the support of this consist of only maximal

ideal, therefore it will be finite length and so on. So we have put this, 
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Then Q from here, we will get equation like this. Q=Pq (M
’
)+Pq(M

‘’
)−Pq (M ) . this is what we 

are interested in finding the degree of this. And this is equal to Pq(M
’
)− f . And so we need to prove 

now that so the claim is, Pq(M
’
)  and f have the same degree and same leading coefficients. Because 

if you prove they have the same degree and same leading coefficient, the degree will get canceled and 
then the degree will drop. So once you prove the claim, the same will follow. So you'll have to prove the 
claim. Okay. So we have this, so just write down the definition. So that means you want to prove that

Pq(M
’
)(n) , this is the length of 

M ’

qn+1M ’
 and f n  is the length of 

M ’

M n+1
’

. So now, this is 

where I have to use Artin lemma. Artin-Rees lemma says by Artin-Rees, this qM n
’  will be equal to

M n+1
’  for large n. This is precisely the, so remember, did I? Yes. Where I put M n

’ , remember did 

we put? That was here.
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M prime n is this the induced filtration, induced q-adic filtration on M ’ .

So because of Artin-Rees, this is M-adic. So that means this and therefore, so this is true for all n big or 

equal to some stage n0 . So therefore if I take qnMm
’ , this is same as Mm+n

’ . Just keep applying 

this. So you get, 
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so because of this, qnM ’  this contains qnMm
’  which is equal to Mm+n

’ , which contains

qm+nM ’ , this is for all n. So the length when I go mod this and compare the lengths, you will get 

length of 
M ’

qnM’
, this is will be less equal to length of M ’  mod this. This is less equal to length of

M ’

qm+nM ’
. Actually that n, this m is n0 . So therefore this is nothing but this one is Pq(M

’
)  

evaluated at n, this is less equal to P, this is not P, this is f, f (n+n0−1)  and this one is Pq(M
’
)  

evaluated at n+n0−1 . So this is a polynomial in n and this is a polynomial, n0  is fixed, neither 

polynomial, neither translated polynomial. So therefore so this is caught in between that. So that proves 
the claim. So this proves the claim. And hence the lemma.
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Okay, the next one, you want to compare the degree. So the next one is, so the next lemma is when we 
have an exact sequence, short exact sequence like this. And q is m primary. And remember our 

assumption that (A ,m)  is local and all these are finite modules and d (M )  we have put,

d (M ) , this is the degree of this polynomial Pq(M ) . It's a polynomial to the actual coefficient and

the degree we are calling it d (M ) . So what we want to prove is, if you have a short exact sequence, 

this degree is the maximum of, degrees which will come from M ’  and which will come from M ‘’ .
So proof, remember in the earlier lemma, we have proved that if I take the degree of the alternating sums 

of the polynomials. So that is degree of Pq(M
’
)+Pq(M

‘ ’
)−Pq(M ) . this degree is strictly smaller 

than degree of Pq(M ) . this is what we proved in earlier lemma. By earlier lemma. So from this, this 

assumption is clear. We got the degree, the maximum of, one of them, where this will not get canceled. 



So the degree, if the degree is not maximum, so this leading term is getting canceled from this one. So 
either one or both will contribute. In either case it's maximum.
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Okay, so the next one. The next one is, the next lemma says that this degree is, we have seen that the 

degree of Pq(M ) , this is bounded by minimal number of generators for q. But, so this lemma says 

that this degree is independent of q. That means if I take a different M primary ideal and do the same, 
form the numerical function and it's a polynomial function corresponding to that, then the degree will not 
change. So the degree will variant and this degree we will connect it to the Krull dimension. That is what 
we call the Dimension theorem. Okay, so to check that this degree is independent of q, you'll have to 
prove that this degree is same as degree of the Max, degree corresponding to polynomial corresponding to
the maximal ideal. So it doesn't depend on the ideal q. okay. So it's enough to show this, but q is m 
primary. This is m-primary and m is maximal ideal in the noetherian ring. So that will imply that some 

power of the maximal ideal is containing q. so therefore when I raise the powers, mrn  is containing

qn  is containing mn , for all n. Now we may take the lengths. So length of 
M

mrnM
, this length 

and length of 
M

qnM
 and the length of 

M

mnM
. These lengths , they are, because smaller the ideal, 

bigger the length, mod. So we have these inequalities. So that will mean that the polynomials 

corresponding to these for large n, the polynomials are Pm(M ) , this is evaluated at rn , this is big 

or equal to Pq(M )  evaluated at n and this is Pm(M )  evaluated at n. And this is true for all n. Not 

n, n−1 . So this is also -1. All these are -1, sorry, this is - 1, this is - 1, this is - 1 because our 



definition of Pq(M )  evaluated at n is 
M

qn−1M
. So this and this are same polynomial. So that will 

imply the degrees are equal. See this, so from here it follows that the degree of the middle one,

Pq(M )  is same as degree of Pm(M ) . So that proves the lemma.
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Okay, so the next time I will do Dimension Theorem, that will in particular show that how does an 
complete Krull dimension of a noetherian local ring and it is finite.


