
Lecture – 24

Hilbert-Samuel Polynomials(Contd)



Gyanam Paramam Dhyeyam: Knowledge is supreme.

So now, I'm going to recall modules of finite length. It's just a review.  I will not prove the statements
but they'll make the statements so clear that you can prove on your own. So R is our ring. Let me call
A as  a  ring.  A is  our  base ring,  always  commutative and M is  an A-module.  We have  studied
Noetherian modules and also Artinian modules I suppose. So let me recall. So what do you do for a

fix module M, I consider all submodules of that. That is  s A(M ) , this is the submodules. N is a

submodule.  A  submodule.   And  this  is  said,  and  the  inclusion  only  said,  s A(M )  with  this

inclusion. This becomes an ordered set.  Ordered set means, a set with a relation and the relation
should satisfy three properties that is reflexive, antisymmetric and transitive. So just it is called an
ordered set.  In many books you'll  find that such are called partial ordered set but partial word is
unnecessary there, so I dropped it and more you go to older books, you'll not  find a word partial. I
don't know why it came from. So orders set for us is a set with an order on that. Okay, now in a
ordered set ascending, descending chains make sense. So  a module is called noetherian, if every
ascending chain become stationary.  And now when do you call  a  module to  be artinian when a
descending chain is stationary. But now you see, to each ordered set there is concept of dual. Dual is
opposite order, so whatever theorem you want to prove for noetherian, if I change this set to the dual
set  the  statement  will  prove.  So  the   noetherian  will  become  artinian  and  artinian  will  become
noetherian. So you only really have to prove one theorem. So if you prove a theorem for noetherian
then the same theorem will be true for artinian by just proving, by just changing this set. Changing the
order to be the opposite. So for example, if you want to show that, if you have short exact sequence.

So 0,  N, M,  N ’ .  If this  is  short exact  and if the middle module is noetherian then other two
modules are noetherian. So same statement, if M is artirian then these two if and only if these two are
artirian, how will you prove? We just change the order and this is really neat. 

So now it may happen that you would've seen examples of modules which are noetherian but not
artirian  and artirian  but  not  noetherian.  So  if  it  is  both  those  modules  have  nice  properties.  So
whatever, so module M with the property ACC as well as DCC.  So noetherian and artirian, these
modules are worth noting. So what does that mean? That means… This means, when we have  such a

module then we have a finite sequence M, which is M 0  contains M 1 , contains and this cannot

go on forever. M k  and then it becomes 0. And each stage not equal. And also this containment, of

course, not equal but I want to also assume that there nobody in between because if somebody in
between I'll insert it. So that means, I will make the chain more and more finer. So there exist a chain

such that the successive quotients 
M i

M i+1

 are simple modules, simple A modules for all i. Simple

you know, simple means, there is no submodule other than 0 and the whole module. 
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So such a series is called Jordan-Holder series. Such a chain is called a Jordan-Holder Series for M.
Some people also called it a Composition series. Okay, now if you have two such chains. Two such
Jordan-Holder series then this theorem that they have the same length. A need two Jordan-Holder
series for M are equivalent. Let me write it are equivalent. So what does equivalent means, so that is if

I have two chains like this. M equal to M 0  containing M l ,.., M k  which is 0 and other one

is N equal to N0 , N l ,... this is 0 and here the successive coefficients are 
M i

M i+1

 are simple.

Here 
N j

N j+1

 simple and we call them equivalent. If K equal to l, and these exists, these guys are

permutations of this. That is there exist a permutation σ  on k letters which is l letters so, Sk

these are the permutations and k symbols such that 
M i

M i+1

, this is isomorphic to 
Nσi

N σi+1

. So up to

permutation the successive coefficients are same, isomorphic.  Two such series are called equivalent.
So Jordan-Holder theorem say that any two Jordan-Holder series or a module are equivalent. So in
particular, they have the same length and this is called the length of a module. So I will not prove this
theorem.  Either do it yourself, I see some standard book. See, may be a McDonald.
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So that is called a length of a module. So I will write that symbol by length l, just to remember which
ring we are working on and this is the length of M. This is called a length of M. These are called
modules of finite length, because length should make sense. In order that it make sense, we have
assume the modules are of both these should satisfy DCC and ACC. So in particular when your base
ring is a field. Suppose, your base ring is field then when will module M. Module M means, K is a
vector  space.  When  will  it  satisfy  ACC  and,  when  will  it  satisfy  DCC,  when  it  is  both  finite
dimension.  So length of A by M, in that  case  this is  nothing but  the  dimension of  that  module,
dimension of vector space M. So this make sense when it is a finite dimensional vector space. So now

going back to our assumption on  R0 . See R was a graded ring and as an algebra over R0, it is

generated by finitely mini elements.  This one came because R is noetherian. That was our assumption

original. So these four say, that R0  should be noetherian but I want assume in above exposition we

have  R0  is actually a field.  But I could also assume that  R0 is finite k-algebra. Remember,

finite means, finitely generated as a module that means, as a vector space it is finite dimensional. And
in that case, the dimension, see in a Poincare Series we have these dimension over k of this modules

M (m) s. So now this M (m) s are of finitely generated modules over R0  and if I assume

R0  is actually finite dimensional vector space then this dimension I will have to replace by length

over R0 .

This will make sense, because this is a finitely generated module and this R0  is artirian ring and

therefore it is artirian and this length will make sense because it will have, it's a noetherian and also
artirian. Therefore this length will make sense and in the above theorem everywhere only definition
will have to replace dimension by this length. And all other induction et cetera everything will go
through in the calculation. You have a graded module R, the graded module we started with. So we
have  a  graded  ring  and  graded  module  over  that  and  we  assuming  the  R  noetherian  and  M is



noetherian and then we define  PM  and in the definition of  PM , this were the coefficient of

Zm . So in the general case now you will have to replace this dimension by the length because if
you  see  the  proof  of  that  if  will  depend  on  the  Jordan-Holder  series.  So  every  time  successive
coefficient.  Just to make that change and check whether a same proof will go through, if you make a
change replace dimension by this length.
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R0  is a field but I'm saying now you can even assume now  R0  is a finite k-algebra.  That

R0  is a field. But we have used for a definition, no? Because I have use the word dimension there.

That's what I said, for a definition of a Poincaré series, the way I've written, we have use that they are

finite dimensional k vector spaces, right? So R0  was our K, otherwise Poincaré series M, what we

have to define it has summation running over M. Now, length of  R0  over  M (m)  and then

Zm . See, earlier when R0  was a field here it was dimension. Now, I'm saying, you take this as

a new definition and this definition. So what we did there was the properties of the dimension, and
here also we'll have to use the properties of the length and what properties when we have a exact
sequence shot exact sequence. Length of middle module is length of the sum from the other two
modules. And if we have a long sequence then the length and if you take alternating signs they need
to be 0. The proof will be the same. So I will not go in to that details. So first of all, if you assume R is

standard graded that means, R, now I will use  R0 . R is  R0  algebra generated by  x1  to

xn  on all x i s, all x1  to xn . They are actually degree 1 element, R1 . That is why the

standard 1.



So sometimes it is also return that this R is as a R0  algebra generated by R1 . And R1  is

finitely generated  R0  module therefore it is. You can choose finitely many elements. So in this

case, the Poincaré series were any grade module M, PM  then looks like, some Laurent polynomial

Q and all now will be (1−Z)
n  because this will be (1−Z)

γ1 ...(1−Z)
γn  and so on then n now.

So now but see, this Q is a Laurent polynomial, maybe this 1 - Z maybe factor of this and so on. So I

want to reduce right in the middle. First of all,  I want to define a new function. This is PM , and

this  PM
(1) , we'll see, why I want to do this.  This is just  PM , one factor I want to add more,

1−Z . This is same as 
Q

(1−Z)
n+1

. And this will be power series Zm . This is a power series,

right? Think of it's a power series and this is also power series. This is power series 1 + Z. Remember

this formula, 
1

1−Z
 is 1+Z+Z2

+.. .  and so on. So the coefficients here, they are, I will denote

them by HM
(1)

(m)  and what HM
(1)

(m) ? See, here what was it originally, it was only the length

or dimension and here now it will get added up because when I'm multiply by this power series, this

one over this, when I multiplied by this power series they will get added up. So this HM
(1)

(m)  will

be equal  to  DimkM i  and i  will  be up to m. Now, I'm still  writing dimension over k,  that  is

because we are assuming these R0  is actually finite K-algebra, if R0  is a finite k-algebra with

dimension, what is the relation between the dimension and length? Then length over R0  will be

this dimension.  Length over  R0 , so if you take now. First length of  R0  over  R0  is just

dimension of R0 . All right, so now, with this simplification now, what we have to do? We have

seen this PM  is a rational function of a particular type and this is further rational function. Now,  I

want to use a partial fractions. So partial fractions. Do you remember what is Partial fraction? Partial
fraction decomposition of a rational function. See, I will just remind you that we have done this many
times. 

For  example.  Let  me  give  you  a  simple  example.  You  remember  when  you  wanted  to  solve

integration of rational functions. So you wanted to solve integration of 
f (t)
g (t )

.  What did you do?

You wrote the denominator polynomial you make split and then so simple. In a quadratic case you did
this, no? This t minus a, t minus b and 1 over this.  First, you divide this polynomial f by g and then
assume that the degree is smaller.  Degree of denominator is smaller than the degree of g. And then
look at this, this you wanted to write, somebody here, somebody here, t minus b, right?  And you
made a computation and see. If it was a power here, then you wanted to do this and also you wanted
to  add square  term and  so  on,  right?  And  why  did  you do  that  because  the  integration  of  this
individual became is here. But very important assumption what you have made is the denominator
polynomial  in  that  rational  function splits  into linear  factors,  right?  Which is  not  a  proof  or  for
example,  bl  polynomials but  real  polynomial  it  is  not  too bad because either a linear factor or  a
quadratic effect but rational polynomial over other fields and that is actually, that is why [inaudible]
stated the fundamental theorem of algebra. You wanted to prove fundamental theorem of algebra
precisely for this reason not because of any algebraic reason. You want to come to an integration and
therefore your looking for such a partial fractions, decomposition with that integration calculation
becomes easier. Therefore he stated that time, fundamental theorem of algebra and he was using only



V L 's but if you proof our complex numbers for V L s also it follows. Fundamental theorem for

algebra V L s is  every polynomial with real coefficients splits into linear quadratic factor. So that

was, so this we are going to imitate for the this rational function generator  PM .  So what will

happen then? So we have this PM
1  and we have written it like, 

Q

(1−Zn+1
)

. And remember n is

the number of algebra generators for R. And this is also we have written a series HM
(1)

(m)  Zm . 

All right, in this I know, with the-- so the first is I'm going to divide the Q by this, and write this as
some polynomial P by the remaining one. The reminder divided by this, the denominator. But in that
I'm also going to use,  So this P is what?  P is the unique polynomial, Laurent polynomial which I got
after dividing by this, right? And in some more terms will come, in those terms I want to use this

formula .This is the decomposition of this partial fraction. So 
1

(1−Z)
ν+1

. What is the formula for

this? This is a sum over m. (m+ν
ν )  Zm . This is more general than 1 - Z, no? So this formula,

I'm going to plug it in here and then re-write this term. So what will I get? And I want to compare and

after that I will compare the coefficients of  Zm . Because then I will get a power series when I
write this formula and then I have this power series then I'll compare the coefficients. So what will be

coefficients? So the coefficients will be they will look like this, HM
(1)

(m) . This one is like this and

this one is also like this. HM
(1)

(m)  at m this will look like, when i use this formula then compare. 

So some integers  and then this  coefficient  m+ν  and this  sum will  run from 0 to  somebody
because you see it's a power series. This way, what did I do on the left side. I first, divide it by this,

1−Zn+1  to this Laurent polynomial and got this Laurent polynomial. So now n minus Z power

that divides and then I use or directly if you want Q is Laurent polynomial and take this 1−Zn+1 ,

and then use this formula. And then compare the coefficient of  Zm  on both sides.  So here this
binomial coefficients will come and they will come with, when I made a division so this d is a unique

integer and this is you wrote to ed , they are integers and ed is non 0.

Yes, they all depend on Q and also… whether 1−Z  divides or… But this also formula holds only
for large M. You see, because this Q as negative terms, no? So when you compare, I want to compare
only for the large power so that the negative coefficient are not playing any role. And you see, this left
side is a length or dimension? So which is a non-negative integer. So from this formula it is clear that

this HM
(1)

(m) . or we will see example for calculation. For calculation, HM
(1)

(m)  this is actually,

asymptotically equivalent  to  ed  and when you expand the binomial  it  is  
md

d !
.  Asymptotic.

Asymptotic means for large. So because when the m is smaller in this binomial expansion the terms
will not contribute to the large one. So they will be smaller and smaller. So this in particular implies

that this ed  is positive because this side is sign is determined by the leading term so that is ed
positive. 
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Now this integer d which I got out of this that I will prove it is a dimension so that will give us a nice
theorem that how do you compute the dimension? So let me write this formula  normally a corollary.

So that what corollary we are proved is the following. So R is the standard graded, R0[ x1, ... , xn] ,

degree of  x i  is one and M finite graded R-module, then there exist unique integer d, actually

natural  number  d,  which  is  d (M ) ,  it  depends  on  M,  so  natural  number  and  integers

e1 , ... , ed∈ℤ  with  ed  positive,  this  is if  d is  positive.  Such that  HM (m)  which is the

dimension over K of Mm  this is equal to summation form ν  equal to 1 to d, eν(m+ν−1
ν−1 )

for larger m. Now here the only difference I made is, we have compu HM
(1)

(m) ted . HM
(1)

(m)  is

sum of the dimensions. From  HM
(1)

(m)  if  you want to compute a dimension you just take the

derivative. It's called derivative. So that means, you take HM
(1)

(m+1)−H M
(1 )

(m)  and we will get.

See, how are going to get, remember this HM
(1)

(m) , this is the dimension minus equal to n. So if I

take m + 1 and subtract  HM
(1)

(m)  from that, I will get this  HM
(1)

(m) , so we get, we have this

formula, HM
(1)

(m+1)−H M
(1 )

(m) , this is  HM (m)  m here and m−1  here. You see, here, it's

the  top  degree  term  will  get  cancelled  that’s  why  it  is  here  the  ν−1 .  See,  the  binomial

coefficients. These polynomial, these , th HM (m)  is a polynomial so, also the polynomial   , this is

HM (m) he polynomial  in  m,  you see,  it's  visible  here,  because here  it  is  this  formula.  It's  a

polynomial in m or degree d. This polynomial is called the Hilbert Samuel polynomial of M. Now let
us see, one example at least. So we will get a custom to the calculation. So example, let us take K is a
field. And let us take our graded ring to be the standard ring, which I will denote X, not one variable

but many variable. X1  to Xn . And let us take module also that M is also the same. So M is a



graded module. And it is standard, R is standard graded K-algebra. In this case R0  is K. Okay, so

what is PK [X ]  that is what we want to compute, right? What is the definition of PK [X ]  , so this

is a series. So this series is what are the coefficients of Zm , the coefficients here are precisely what

dimension of over k of Mm . So you need to compute what is dimension of  Mm . So what is

Mm ?  Mm  is homogeneous components of degree m and what is that? What is the coefficient?

This is the binomial equation, right? This is (m+n−1
n−1 ) . You see, you can test it, take one variable

so what is one variable case? So n is 1 then it should be what? One only,right? So it is m plus 0,

choose 0 which is 1 always. It's actually the series 1+Z+Z2
+.. .  and so on. This one is nothing

but 
1

(1−Z)
n

. This we approved it. The Laurent polynomial is 1 in this case. So it is this. So what

is d in this case? d is n and which is of course, this anything nothing but the krull dimension of our
ring. This we have proved it in the last lecture we approved. If we take a polynomial ring over a field

then the Krull dimension is n. And what is ea , now it as coefficients up to en . So en is 1 and all

other coefficients are 0 for all i⩽n , in the corollary which you have stated.
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Because it's only the this and this and the remaining coefficients are 0. And now you could also
compute an example where you take polynomial ring and choose one homogeneous polynomial of
sum degree and then calculate.  We take F homogeneous polynomial of degree r and take R to be
equal to polynomial ring in n variables, module F, ideal generated by F. This is your graded and now



do calculate PR  first. And how will you calculate PR ? PR  you know, to calculate PR ,

you calculate you know the P of the polynomial ring and this F degree r used at multiplication by
kind  of  argument   and   you  will  calculate.  Then  the  rest  is  the  numerical  calculation  with  the
polynomial.


