
Lecture - 23

Hilbert-Samuel Polynomials



Gyanam Paramam Dhyeyam: Knowledge is supreme.

We will continue our study of dimension through Hilbert Samuel polynomials. So, last time I studied
a theorem and we have to, we're not started the proof of it yet. Today we will finish the proof and
continue with the study. So, let me recall from the last time that we have a graded ring R. That means,

it is like this, it's decomposition into subgroups. This is ℕ -graded. And the condition that Rn
times  Rm  is contained  Rn+m  for all n and m. In particular,  R0  is the subring and all the

subgroups,  Rm  are  R0  modules.  And  we  are  going  to  assume  further  that  these  R  is  a

noetherian  ring.  R  is  noetherian.  That  means  all  ideals  in  this  ring  are  finitely  generated  or
equivalently arbitrary family of ideals have a maximal element. This one is equivalent to, this is

equivalent to saying that  R0  is noetherian and this ideal for this (R ,+) , if you take all non-

zero direct sumands. Rm  and these, positive, this is clearly an ideal. There's an ideal in this. If this

ideal  is  finitely generated,  and  R0  is  noetherian then already that's  equivalent  to  saying R is

noetherian. This is not so difficult. This is because if this ideal is, so this way is obvious. This way is

clear and for this way,  R0  in noetherian given and this ideal is finitely generated. This is the

homogeneous  idea.  It's  clear,  it's  homogeneous,  and  it  is  finitely  generated.  So,  finitely  mainly

homogeneous elements will generate that. So, if you take those homogeneous elements. So,  R0 ,

(R ,+)  is generated by homogeneous elements say, where our x1  to xr  are homogeneous

and  positivity  increase.  Then  the  map  from  the  polynomial  ring  R0[ x1, ... , xr] .  To  R,  R  is

generated as an algebra by this x1  to xr  over R0 .

So  there  is  a  natural  subjective  map  from here  to  here.  And  because  this  is  noetherian,  this  is
noetherian by Hilbert. This is the law. So, by Hilbert, this is R is noetherian. That is usually the basic
assumption we will make always.
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Alright. So, then, we consider the modals over this ring. Which are graded modules? So M is a graded
module. So M is a as a decomposition into Abelian group like this. And now you allow some negative

integers also. This is R module. And the graded means this  Rn .Rm  is containing  M n+m . So

also this, each, these are homogeneous components of degree M and they are  R0  modules. And

now  also,  we  make  the  standard  assumption  that  M  is  finitely  generated  R  module,  which  is

equivalent to each Mm  is finitely generated R0  module for all M. And for large negative they

are zero. Mm  is zero, for all M, large negative. That is symbol for sufficiently in large negative.

This is also very easy to see because. So, first of all, this way is clear and this way, if any finitely
generated then, then, if you shift, if you look at M, less equal to or bigger equal to M, this is direct

sum after Mm , n bigger equal to m. If M is finitely generated then all these are the submodules.

Therefore, they're finitely generated and the successive quotient Mm is M bigger equal to m plus 1,
module M bigger equal to M. Because when I go mod, when shift, we will get the homogeneous
compound of degree M. So, this is R is noetherian. So these quotients are finitely generated that
means Mm are finitely generated. And each Mm are finitely generated. So, unless, this M is, if it is
not zero for large negative integers then you can produce a chain, ascending chain which will not have
a, which will not become stationery.
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So therefore, all  Mm  are zero for large negative M. So these are the usual standard assumptions

when  makes  and  standard  example  one  considers  is  the  polynomial  ring  over  a  field
K [X1 ,... , Xn] . And these are the standard grading. That simply means to each variable, you give

grading to degree of variable  X i  is 1 for all i. This is called a standard grading. With this, the

homogeneous components are precisely the generated by homogeneous polynomials of  that  fixed
degree.  So  those  are  the  homogeneous components.  And,  the  more  examples  we  can  create  this
standard graded ring by going module of the homogeneous ideals. So where we have enough number
of examples for graded ring and so on. In fact, what I will do after I finish this module, I want to study
in general dimension of Noetherian ring by using graded, by reducing their schedule to graded rings
and use this theory for that. So to each graded module, to each graded module m, we've attached this

series that is we called Poincare series, PM . I know, how is with this, this defined Pm is defined

as, this is a series, power series. So this is actually power series. It is a power series with coefficient in
ℤ , in the variable Z, and polynomial Z inverse in that. So that is dimension, look at the graded

components here. Homogenous components Mm , some of this could have negative homogenous

component. So this is the sum dimension of. Here I was also assumed at least for a while, I will

assume that R0  is, so R is graded ring. It looks like this. And R0  is actually finite K algebra,

where K is a field. K is a field. So just for the sake of understanding, take R0  equal to K, because

the general K is finite, K algebra, I want to soon even do it even more general than that. So I want to

assume that R0  is artinian ring. I will recall about artinian rings just before I start the general case.

So for a field, if R0  is a field, then all these Mm  are K vector spaces. So take the dimensions,

so this is some integer and take, this is a coefficient of Zm . So it's power series in Z with integer
coefficient. But you remember this power series as some negative terms. So therefore, and they're
only finitely limit, because of our assumption that M is finitely generated. So therefore, it is a Laurent
polynomial in Z, with coefficients in the power series. Okay. And what did we see? Last time we saw
how does one compute, for example, when I have a twist, twisting means shifting the grading. So for



each integer m, I have defined M (−m)n . This is a new graded module, such that, the grading is

shifted by this at n, equal to Mm+n . This is a new. This is a grading module, only shifting, only we

have renumbered the components by the shifting. And then we saw, if you take the compare the
Poincare series for m and Poincare series for the shifted graded module, then how does it behave we

saw. This is equal to Zm . In general, you could write for a k actually, that's better M (k ) . For

any integer k. This is just shifting by k. So how do you compute?
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Also we saw when you go mod homogeneous element then how do you compute the Poincare series?
Okay and then, with all these things, we have stated a theorem and we want to prove that theorem. So
what is the theorem? 
Okay, so we know now that our R is over R0  generated by finitely homogeneously elements. So

that is x1  to xr . And x1  to xr , each x i , homogeneous and let us call the degree to be

γi  i  is from 1 to r. They're non-negative integers, positive integers actually, so gamma Is are

natural numbers, positive natural numbers. When all the gamma Is are 1 then we're in a standard case.
And we will see some examples where allowing all gamma Is are not necessary one that also has
helping calculation of some Hilbert series or some dimension to some, some more invariants. So, in
this case, so R is this. Okay, and M, M is graded R module. What are the assumptions we have? Okay
then, the theorem says, how, this theorem will tell how to calculate the Poincare series. R and M as

above. The Poincare series  PM  of M is a rational function of the type. See when I say rational

function you see it's already we know it's a polynomial over ℤ , a power series in Z and finitely



meaningindicate terms. So, it's not really a rational function by definition but this part say that it is a

function  and  of  a  particular  type.  So  what  type?  PM  equal  to  Q,  divided  by

(1−Z
γ1) ...(1– Z

γn) .  Let us call  this as n. So, Q where Q is Laurent polynomial with integer

coefficients.  We will  see the prove is really simple.  So first,  so it's a rational function it  will  be
because Q is also rational function it has only finitely negative. So it is really a rational function. So,
it's really a rational function with integer coefficients.
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So proof. We will prove this statement by induction on n. Remember the n is the number of R0

algebra generator of R. Right. The R0  algebra, R is generated by this x1  to xn .  x1  to

xn  are homogeneous of degree, γ1  to γn  and this n we are going to induct on.

So induction starting should be at 0. So n equal to 0, what happens? That means, i is R0  and then

all, all M (m)  are finitely generated R0  modules. And, M is finite, R module, therefore finite

R0  module.  Therefore,  really  only  finite  meaing  components  M are  non-zero,  because  it's  a

finitely generated  R0  module. So, in this case, M is finite  R0  module. Just remember that

when I say module is finite that means it's a finitely generated module. It's a finite R0  module and

in particular. So, okay. To let, we're assuming R equal to K. So it's a finite K module means, its finite
dimensional k-victor space. So dimension k-vector space. So dimension K, M is finite. And in this

case actually PM  is actually a Laurent polynomial. In ℤ[Z±1
] . R0  equal to K, but I want

to, with the next step means, right now I'm assuming only R0  is K. That is because I'm not really

sure whether you know module of finite length. Have you got exposure to modules of finite length?
So, that's why I'm keeping it pending in general case, so that I will, after this, we will, I will recall
some basics  about  modules  of  finite  link then we will  come back to  this.  So in  this  case,  R_0,



Poincare series is a Laurent polynomial. Because after a while, all M (m)  are 0 and only finitely

meaning negative terms are there. Therefore, this is really a Poincare series. So, and that matches with
this because what we wanted to prove is, the Poincare series is a Laurent polynomial divided by this
particular polynomial. And, in this case, all γ s are not there, so this part is not there because N is
o. So, this proves the theorem in case when n is 0. Now assume n is bigger equal to 1. Okay, and now,

look at this xn . xn  is of degree γn . So, M, if I shift m, by gamma and the negative side. So

γn , to M, and take a multiplication map by xn . And why did I shift it? I shifted it because I

wanted these to be homogeneous of degree zero. Which should be a graded homomorphism, That is

the  reason I  shifted  these  by  the  degree  of  xn .  So  this  multiplication  map has  a  kernel  and

cokernel. So kernel,  let us call  N to be kernel and P to be the cokernel.  So we will  get an exact
sequence like that.  Remember cokernel means, this modulo by image, so that this becomes exact
sequence. Exact sequence, you know. That means that each page is exact. So this is an exact sequence
and last  time we called at  whenever  we have a exact  sequence of  homogenous graded modules,
graded modules with homogenous homomorphisms then the alternating sum of the Poincare series

will be 0. So, in this case, what will we get? So, first of all, PN . PN  will look like, now this N

and P, note that N and P are not only R modules, but 
R
x1

 module. See R is a graded ring, original

graded ring, is x1 , not  x1,xn .  xn  is a homogeneous element of degree n. So this generate

homogeneous ideal. So module with that, it is a graded ring again. So this graded now as a  R0

module it is generated by one lesser limit. Namely xn , so it is generated as algebra over R0  by

x1, ... , xn−1 . And this N and P, both are and related by  xn .  xn  times n is zero and also

xn  times P is 0. Because there are related by xn , both of them can be taught as a R by ideal

generated by xn  module and which, now cut down the number of R0  algebra generators. So by

induction hypothesis, the Poincare series of N and Poincare series of Pr  of the required form. So,

Pn and Pq, how do they look like? PN  and PP . This will look like some Laurent polynomial.

So, I will denote it by QN . Because it will depend on N divided by this (1−Z
γ1) ...(1– Z

γn−1) .

And  similarly  this  PP  will  also  be  Laurent  polynomial  QP  divided  by

(1−Z
γ1) ...(1– Z

γn−1) .
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So we should write where this QN  and QP  are Laurent polynomials with integer coefficients.

This is the induction hypothesis. And now, because of the short, this exact sequence above, we will
take the alternative sum is 0. So let us write the sequence for that. So what do we get? We get starting

with N. That is  PN , the next will be this shifted M by −γn . And that we know what is the

Poincare series for this. So that is, with gamma, with the negative sign – Zγn , PM . The next is

M, so that is PM  with the plus sign. Next will be the minus sign and Pp and this is zero. Now in

this equation, we know what is PP , we know what is PN  by induction and we want to know

what is PN  but that is very easy now, because from this we get PM  times (1−Z
γn)  times

PM , this I want to keep one side, the other side is shifted that is this goes PP  - PN . And

this is not QM ,QM  will look like the Laurent polynomials from the numerators from each one of

them. So that  is  QP−QN  and divided by  (1−Z
γ1) ...(1– Z

γn−1) .  And just  shift  this  to the

denominator down and you get  QM  is the difference of these two Laurent polynomials, so it is

also Laurent polynomial and we get what we want. So this, this proves the theorem. Now before I go
on, I want to spend some time to relieve this assumption that I'm not in the field. And therefore I will
need more, I will concept of modules of finite length. So what I want to say that, if I, if I have a
modules of finite length means length of a module should make sense. And this length concept should
be  more  general  than  dimension  concept.  So  over  a  finite  K  algebra,  are  the  finitely  generated
modules will be of finite length. And therefore all these things should make sense. So again I will
recapitulate after we recall this concept of modules of finite length.
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