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Commutative Algebra

On 

    Language of Algebraic Geometry



Gyanam Paramam Dhyeyam. Knowledge is supreme.

In the general case, in the general case, let us denote, let h and t be natural numbers such that height of

q is at least h, and transcendent degree of the residue fields k (q)  or k ( p)  be at least t. Choose,

these are two non-negative numbers, so I will choose some natural numbers where this is at least h,
and this is at least t. h and t could be zero. So, this height q at least, h means, there is a chain of length

h in B, in the spectrum of B. So, there is a chain q0  contain in,contain in, contain in qh  in Spec

B. And now, this is contained in q. Right, q is at least h, so at least there is length of chain, this could
be equal length then.
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And similarly,  about  the  transcendent  degree,the transcendent  degree is  at  least,  t  means,  I  have

elements. So there are elements, b1  to bt∈B . And there exist, b1  to bt∈B , such that,

they are  images in  the  residue  field,  b1 ,...  bt ,  in  k (q)  are  algebraically   independent

overkp. See, this is what I’m using, thetranscendent degree of this residue field at q over k ( p)  at

least t, means there are elements which are algebraically independent over this residue field. So the

elements here are coming from B. So, those are, that is what I call it b1  to bt . All right, now

choose, because the chain is proper chain, I will choose at each stage an element which is not coming

from the earlier one. So choose c i∈qi  which is not in qi−1 . This we choose it for i equal to 1 to

h. Okay. We can choose an element here, which is not earlier, and keep doing it. So there the c’s. And

now I consider they are in  B ' . This  B '  is the algebra generate by this c's and these b's. So,

b1  to  bt ,  and  c1  to  ch .  Look at  this  algebra.  See,  what  the  idea is,  from a given,

situation, you create a situation, so that, you prove the, you know, that for the sub ring, which is
finite,take algebra and then, that's how the data is captured, know, so that is the idea. So, now this b

isA algebra of finite type, and the chain remains there and, so you contract the chain to be B ' , so

that means you have here q0∩B
'  contain in, and these containment remains proper because I have



made surethat the elements are also in B ' . So this is in q1∩B
'  and so on. This is qh∩B

' .

That is why we put all the elementshere in B ' . So, this is correct. And also, the residue field, if I
take this prime ideal,  of course, this contains, this is containing q intersection b, and if I takethe

residue field at this B ' . Residue field at this-- there are actually contain all these b's also, because b

were  in  q.  So,  this  b1 ,  the  image  is  here,  bt ,  they  are  all  algebraically  independent  over

k ( p) .I don't even need this. They are there, so I don't even want to use this. So, what do I know

from the early situation, finite take k algebra case, that the height plus the transcendent degree is less

equal to height of this contracted ideal,  q∩B '  plus the transcendent degree of over  k ( p) ,

k (q∩B' ) . These I know, this is the case from finite type case, because I am applying it to B ' .

But is less equal to height p plus transcendent degree of B '  over A, which is less equal to height p
plus transcendent degree of B over A, because this transcendent degree may go up. 
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So, that trues the inequality. Okay. So, I will  remember that we have two state true that,  the one
inequality that-- for that I will need, little bit more local algebra and thing like, system of parameters
and thing like that. So, when I come develop that, I will come back to that proof. Now, I want to
spend some little more time for the geometric part which we will keep-- which I have used in these
exercises also.  For example, the Hilbert's Rule telling that,so, the numbering here in the exercises, so
what I have done is, at little miracle. So, the idea of the-- so this recall this from-- this is the beginning
of the algebraic geometry. This-- so for example, the problem is-- so algebraic geometry is study of
solutions of finitely many polynomials, infinitely many variables. So, it's a study of Solution Sets of

equation like this,  f 1  and f 1  is a polynomial in X1  to Xn ,  f m in X1  to Xn .

So, and we want to equate, we want to find the common solutions. So the standard notation for that is
and where? This is very important, where you are taking, where are the co-efficients and where you
want to look for the solutions. So, I don't want to assume in the beginning itself that the base field is



algebraically close. I don't to assume that, because then you cannot certify, for example, equations or
rational numbers which are very important. 

So we want to allow base will to be non-algebraically closed. But the solution we will look for in
algebraically closed, because if you don't do that, then there may not be any solution. So, the typical
situation, what I will consider is, K is the given field, and I will take a bigger field than K. K is if L, or
K is  a  field  extension.  And  in  this,  I  will  assume that  bigger  field  is  algebraically  closed.  L  is
algebraically closed. And, therefore, when I look for the solutions, I look for the solutions in L, it

coordinates in L. So therefore, the notation one uses will be  V L . Just to remember, that we are

taking  the  solutions  in  L.  V L  of  f 1  to  f m .  This  is  by  definition.  All  those  points

a=(a1 , ... , an)  in  Ln  such that all  f i  is vanished there for all i. This is some subset of

Ln . And this is called algebraic, K-algebraic set defined by f 1  to f m .
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We are also keeping track of the coefficients where they are lying. So, for example, for example, the
Fermat's Last Theorem… So that was asking, what we know is or see they are in Infinitely Many
Solutions. But over ℚ , the solution where we wanted to show that the over ℚ , they are only
finitely many and which are they. So that was a problem. So, later on, I would even want to drop this
condition where K is a field, and replaced by integers or arbitrary ring. But those will require more,

more sophisticated tools,  we will see it at the end if it is possible. So,  V L  also, now obvious

things, you might have checked earlier that this V L  depends only on the you ideal generated fn to

fm. This will not change. The solutions will not change, because any other polynomial in the ideal is a
linear combination of that. So, in other words, I can always consented only the ideals in a polynomial

ring in variable. So, therefore, we are considering only ideals in  K [X 1 ,... , Xn] . And we have

given a map V L  from these ideal set to K-algebraic sets in Ln  which you think it is a subset of

the power set of Ln . Alright. And also, you knew it that this L doesn’t only depend on the ideal, it



depends on the radical of that ideal. So you might change these ideals to radical ideal, because once
you know for the radical ideal, you know. So, therefore, I will consider this L map from radical ideals

K [X 1 ,... , Xn]  to K-algebraic sets in Ln . And, also, it is, you might have checked earlier that

these K-algebraic sets form, it defines a topology on Ln  where you declare the close sets in that
topology are precisely the algebraic cells. So those things I'm not checking. So, I’m achieving those.

So, this is our V L  map. And we have a map in the other direction, namely, so given a... Actually,

the map is, again, like this map. It is from arbitrary set. If I have arbitrary set W of Ln , then we

have the ideal IK  of, now I have to use this I_K also in the notation because we want to keep track

where the equation are. This is by definition, all those polynomials f in the ball ring such that, F is 0 at
every point of W. F of a is 0 for a in W. Now when you check that this is an ideal, that is obvious,
because fm vanishes, g vanishes, then, f + g also vanish, and arbitrary multiplication by arbitrary
polynomial also vanish. 
So this is actually an ideal. Not only an ideal, it a root ideal. That is also clear, because if power of a

polynomial vanishes at a, then that polynomial also vanishes because, see if f n  is f (a)n  and in

the field we are, so therefore, fa is also 0. So therefore, this is a root ideal. Sometimes, they will
radical or root ideal, that is same as this. So therefore, we have a map in the other direction namely

this IK . 
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And then, we want to know when these maps are inverses of each other. And that is precisely when?
If L is algebraically closed, then these maps are inverses of each other. So when L is algebraically

closed, then V L  and IK  are inclusion reversing inverses of each other. Obviously, this L, if an

radical ideal is containing radical ideal b, then V L  reverse the inclusion, and similarly, this ideal.

Okay, then, to this, we write the consequences namely, so what I call, this HNS 1. So, for example,

what is the criteria in that given any ideal,  V L  of that is non-empty. See, it’s not clear whether



V L  of an ideal in non-empty. So HNS 1 says, if L is algebraically closed, then, and V L  of a is

non-empty if a is a proper ideal. That means there is at least a common, one common solution. So this
is like linear algebra. You see, if all were linear polynomials, if all these fis were linears, then we
know from linear algebra that the system of linear equation is consistent if some condition, right? So,
similar to that. So this is a proper ideal. Also, I forgot to mention that, any ideal is finitely generated,
that is why Hilbert proved the Hilbert Basis Theorem, that only finitely equations are needed to define

an algebraic set. Okay, so HNS 2, that says, if I take V L  of an ideal a and I apply IK  to that,

then this is some ideal and this ideal is, if a is a root ideal, then this ideal is a. Otherwise, we’ll have to
write root a here. So this, so let me write root a here. So this is usually called, if you see the books, it
is called a geometric form. The first is, I don’t know, it’s called a weak form. And then HNS 3, so this
is, again, under the assumption L algebraically closed. And both these are not true if you drop the
assumption L algebraically closed. Okay. And third one, third one is simple. Third one is more easier
to state, easier to prove. So E over K as the field extension, L is, K is over this field, E over K the field
extension, and E is K algebra of finite type. Then K is-- E is algebraic over K in particular finite. E is
the finite over K. That is the dimension as the vector space is finite. So actually, this formulation HNS
1 equivalent to HNS 2, HNS 3 and equivalent to HNS 2. They are equivalent. This also, I am not-- I
don't know whether you ever know, you know the proofs individually probably but you don't know
the proof of equivalence. So I will write in the notes, you can read there. 
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And also, if you remember we have stated the fourth one there in the exercise sheet. HNS 4. You

remember, if K algebraically closed, then Spm,  K [X 1 ,... , Xn] , and  Kn . So this is a map,

obvious map is  in this  way.  Given a  point  a  equal  to a1 to  an,  you take the ideal  generated by
X1−a1  et cetera,  Xn−an . This is the maximal ideal at point a. And this map, it's obviously

injective. This is injective, that is clear. But, if K is algebraically closed, then this map is actually
bijective. And if K is not algebraically closed, this is false. For example, if I take K equal to real

numbers, n equal to 1, and if you take the ideal generated by X2
+1 , this is a maximal ideal. But it



is not coming from a point, but not in the image of above map. You see, no under, this polynomial
doesn’t have a 0 in R. That is why HNS 1 also fails, HNS 2 also fails and HNS 3 also fails. And HNS
4 is also equivalent actually, HNS 3. Once they are proved to 3, you see, the easiest is to prove is 3,
because it's a field theory. 
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So this also you can—it’s written as an exercise here. So you can try to check.


