
Speaking (foreign language).  Knowledge is supreme.

Today I will have more consequences on the refined version of NNL.  The first theorem we will
prove is, if K is a field, then the polynomial ring in the n variables over K as dimension n, that
means you need to prove that there is a chain of length n in the spectrum of this polynomial
algebra and every chain of prime ideals in this should have length at most n.  So first I am trying
to produce a chain of length n in the spectrum of the polynomial algebra.  So for that observe
that 0 is a prime ideal, ideal generated by X1  is a prime ideal, ideal generated by X1 , X2
is a prime ideal, and so on.  Ideal generated by  X1 ,…, Xn  these are all prime ideals.  The

easiest way to check that these are prime ideals is just go mark that and check the ring is an
integral domain.  And in each one of these case actually the residue class ring is actually the
polynomial ring.  Therefore it's an integral domain.  So… and the chain is at no place there is
equality.  So it’s a chain of length N.  So therefore its immediate by definition of the dimension
that dimension of K [X1 ,…, Xn]  is n less bigger equal to n.  Because this is a chain of length

n.  So the dimension is supreme, therefore this dimension is at least n.  Conversely I want to
prove that every chain has length at most n.  So start with arbitrary chain P0  contained in

P1  and so on, contained in Pr , this is in spec of K [X1 ,…, Xn] , this is… this has length

R and we want to prove  r⩽n .   so to prove  r⩽n .   Now I am going to apply Nagata's
version of NNL to this chain.  And the ring A is the polynomial ring.  This… and this is a chain in
that spectrum.  So Nagata generally say that I will find an elements Y 1  to  Y m  in these,

which are algebraically independent and when I  contract this chain of prime ideals to that,
generated by the variables.  So there exist… so B is K [Y 1 ,…,Y n] , so that this is integral and

Y 1  to  Y n  are  algebraically  independent,  such  that  P0  intersected  with  B,  this  is

generated  by  Y 1  to  Y h(0) ,  I  will  use  the  same  notation  h(0)  then  contained  in

P1∩B , this is also generated by the variables Y 1  to Y h(1)  and so on.  And because this

is an integral extension, if this chain is proper than the contracted chain is also proper, because
the integralness.
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So that is, so the last one is Pr∩B , this is Y 1  to Y h(r ) .  So here just observe that I have

used the same n,  that  I  explained last  time, because the,  because of  this  integralness,  the
transcendent degrees are same, therefore it is the same n.
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So therefore, because the chain is proper, the h are increasing h(i+1)>h(i)  for every i = 0 to

whatever r.  So we get a chain like this 0 less equal to to  h(0) , strictly less than  h(1) ,

strictly less than… strictly less than h(r ) , which is less equal to n, because the number of

variables is at most n and h are increasing so the one… therefore r is less, r⩽n  and therefore
dimension of A is less equal to n.  So that finishes the proof.  Right so thing to note that is from
the… the classical version of normalization Lemma, you could not have reduced this, because
we needed refined, where for the chains, that was the reason I proved that first, okay.  Now the
next observation is, this is also very important, this… this in fact shows that the dimension of a
finite type K algebra is finite.  From the definition of a dimension, it is not clear, a dimension is
finite or not.  But, so… A is K algebra of finite type.  Assume that A is an integral domain, then
the dimension of A is transcendent degree of A over K, when I write this, this is by definition
transcendent degree of the quotient field of A over K, quotient field of A is an extension field…
field extension of A… K and last time I recalled what is the definition of a transcendent degree
of a field extension.  It is the number of algebraically independent elements, so that when you
joint them, you get an algebraic extension of, quotient release and algebraic extension of this
purely transcendent extension.  So proof.  So this… this in particular says that the dimension of
finite type K algebra is  finite.   So because this  transcendent degree is  finite.   Because the
quotient field is finitely generated field extension.  So therefore the transcendent degree can at
most be the number of K algebra generators for… for the algebra A, okay.  So by normalization



Lemma, we have, we can find algebraically independent elements K [X1 ,…, Xn] , such that

this  extension  is  integral  and  these  are  algebraically  independent  elements.   So  this  is  a
polynomial  algebra.   Let's  call  this as B.   We have noted last  time that whenever we have
integral  extension,  then  the  dimensions  are  same,  so  therefore  dimension  of  A  equal  to
dimension  of  B,  but  B  is  a  polynomial  algebra,  because  X1  to  Xn  are  algebraically

independent.  Therefore this is n by earlier theorem. And this n is nothing, but the transcendent
degree, because in this case, the quotient field of A, when I go to quotient field level.
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quotient field of B, this is rational function field in  n variables and quotient field of A is here and
this… because this A is integral over B, this is algebraic extension.  Therefore indeed this X1
to Xn  is a transcendent basis.  So X1  to Xn  is a transcendence basis of Q(A)  over

A and we have by… we have stated that any two transcendent basis of the same number of
elements, so therefore transcendent degree of  Q(A)  over K is n and just  now we have

proved this that n is the dimension of A.  This is very-very important for those who want to
study algebraic geometry.  When… when we have enough language, next time I want to do little
bit of language from algebraic geometry, because one cannot really avoid it.  So it is better that
we… we do it from the basic search and then some more consequences, which are geometric in
nature, that we will… we will write down, okay.  Now the next one is… next one is also very



important theorem for many things.  So that… so again K is a field and A is finite… K algebra of
finite type.  This is also sometimes I call it affine algebra over K.  And supposedly I have a prime
ideal P, let's assume also A is an integral domain, assume that A is an integral domain.  So let P
be a prime ideal in A, then we have these two things, two numbers attached to this P, one is
height P and the other is dimension of the residue class ring.  So height P is by definition, you
know, you take the chains of prime ideals, which will end at P.  So P0  contained in P1  etc.

etc.  Pr , which is P… this is a length of r… length is r, ending at P and you take the supreme

HR, that is called the height of P.  On the other hand, we have also this dimension of the residue
class string, that means you start with a chain at P and take, this is a chain of prime ideals in A…
in spec A.  And if you take their supreme here, then you get a dimension of the residue class.
So we want to know what is the relation between the three numbers, dimension A, height P,

and dimension of  
A
P

 and obviously one, if I take the chain, which ends at P and continue

with the chain, obviously I am going to get a chain of length, their sum, so therefore dimension
is at least the sum.
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But the assertion here we want to prove is actually it is equal.  So this is for, so the assertion is,

so then, dimension of A = height P + dimension of the residue classing 
A
P

, proof.  As I said



that it is clear that dimension of A is bigger equal to height P + dimension 
A
P

.  So let us… let

me give this height P as name H.  I want to put the reverse in any quality.  So I am going to
apply Nagata's version of NNL, so I apply Nagata's version of NNL to A… to the ring A, so you
need affine algebra A, that is A, and I need a chain also, so but the chain I just take P.  There is
only 1 element, that is the length 0 chain.  So Nagata's version will say, there exist a polynomial
ring inside this, so that is, let's call it B is K [X1 ,…, Xn]  and this is integral.  Such that this P,

when I contact to B it is generated by variables.  So P contracted to B is generated by X1  to

Xn .   This  is  a  polynomial  ring,  polynomial  algebra,  that  means  X1  to  Xn  are

algebraically  independent,  this  is  for  some r,  bigger  equal  to  0.   First  of  all  note  that  the
dimension  of  A  is  n,  because  this  is  integral  and  now  the  next  thing  to  note  is  this  B  is
polynomial algebra, therefore note that B is an integrally closed domain.  Polynomial ring is a
UFD and UFDs are integrally closed, that is may be the shortest, right.  So its integrally closed
and integral homomorphism, then I want to say, the going down holds, going down theorem
holds for this extension.
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See last time I recalled what is going down, right.  So the going down one of the consequence
there is, if I take the prime ideal P in A and contact to B, then the height will not chain.  So in



particular if P is a prime ideal in A and if I take Q to be = the contraction of P to B then height of
P = height of Q.
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This is very simple to check from going down, but height of Q is height of Q is generated by
X1  to  X r ,  because  when  we  have  chosen  this  extension,  so  that  contraction  of  P

generated by X1  to X r .  So this is height of ideal generated by X1  to X r , which is

Right, that is because you definitely have a chain, so this one definitely have a chain, which
starts at 0, ideal generated by X1 , ideal generated X1 , X2 , this is a proper chain, all the

way to ideal generated by X1  to X r .  So therefore height of this Q is at least r, but on the

other hand, I want to check that, the height is exactly r.  So what we need to check now is
height of Q cannot be bigger than r, if it is bigger than r, then we should get a contradiction,
okay.  So if height is bigger than r, then look at dimension of B, which is bigger than equal to

height of Q + dimension of the residue classing 
B
Q

, but we are assuming height of Q is the

least r,  so this is  strictly bigger than r and this residue class ring is a polynomial  ring in  n
variables, more the ideal generated by polynomials up to X1  to X r .  So it will disappear.

The variables X1  to X r  will disappear and the remaining variables will be X r+1 X r+2  up

to  Xn ,  and  those are  n-r  in  number.   So this  dimension is  n-r.   We approved that  the



dimension of the polynomial ring or a field is the number of variables, so this is exactly n-r,
which is n.  So this shows that the dimension of B is big… strictly bigger than n, but that is not
possible,  because dimension B is  n,  so not possible.   So and what is the dimension of  the

residue class ring, dimension of 
A
P

, this is dimension of 
B
P

∩B , because when I go mod, I

get an integral  extent, this is because  
A
P

 and this A…  
B

⟨X1 , ..., X r⟩
,  this is an integral

extension, this is integral, because original extension A to B was integral.  So I just gone, passed
down to the residue class rings.  So this is integral, therefore dimension of this = to dimension
of this, dimension of this is exactly n-r because this B1  to… the residue class ring is nothing

but K [X r+1 ,…, X n] .
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So therefore when you add up, height of P + dimension of 
A
P

, height of P is r, oh I mixed it

up, I called it H sometime, so let's correct here, this is not H, this is r letter, okay.  So therefore
this is r + this is n-r, which is n, and which was nothing, but the dimension of A, because again
integralness, so that proves the theorem, right, okay.
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