
Speaking (foreign language).  Knowledge is supreme.

Now remind… let me remind you the normalization Lemma, what did we prove, we proved that
if I have a finite type K algebra A, then I can find an elements there which are algebraically
independent and this extension… this extension is integral and this is the polynomial algebra,
because they are algebraically independent.  So therefore just now what we have proved is
dimension of this… this is a fine K algebra, dimension of A is equal to dimension of polynomial
algebra in n variables.   And now this  integer n… this  integer n is  nothing,  but… this  n the
number of variables, that also is nothing, but the transcendent degree of the rational function
field in n variables.  So I will recall little bit about transcendent degree, okay.  So that is what I
was saying that this is one way to compute dimension in case of affine algebra and which is
finite, because we are dealing with finite type algebra, so you all  that involve finitely many
variables, polynomial rings and therefore it is finite.
(Refer Slide Time: 02:30)

Okay so let us recall some basic things about transcendent degree.  So if I have a field extension
L∣K  and subset S of L is called a transcendent basis of L∣K  and subset S of L is called a

transcendent basis of L∣K , if two things, number one S is algebraically independent over K
and second L is algebraically over K (S) .  This is the smallest field of L continue K and S or as

a field it is generated over K by S.



(Refer Slide Time: 03:16)

And then what proves that, I will state it as a theorem.  It says that if I have a field extension
L∣K  then one, there exist a transcendent basis for L∣K  and two any two transcendent

basis  of  L∣K  have  the  same  cardinality.   And  this  common  cardinality  is  called  a
transcendent degree of L∣K .  The common cardinality, the transcendence degree of L∣K
denoted by tr . degK L .
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This one has obvious properties.  Okay, before… before I go on to the properties, we should say
some examples… see some examples.  L∣K  is algebraic, if and only the transcendent degree
of  L∣K  is 0, in fact in this case, empty set is a transcendent basis.  You don’t need any…
any… So second, if I have rational function field, L is the rational function field, this means that
quotient of A, quotient filed of the polynomial  algebra, then obviously  X1  to  Xn  is a

transcendent basis.  So in this case the transcendent degree of K (X1 ,…, Xn)∣K  is n.  Third,

if  we have a field,  which is  generated over… generated  over  some  K (x1 ,…, xm) ,  some

elements X1  to Xm , then the transcendent degree is small or equal to m.  Equality holds

if and only if this X1  to Xm  are algebraically independent.
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Okay this is one transcendent base, but you can give another transcendent base also, because

you  can  simply  take  the  powers.   Suppose  I  take  integers  X1
r1 ,  Xn

r n ,  this  is  also

transcendent base.  That’s also easy to check.
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So remember here this… this… proof of this theorem about transcendent basis and cardinalities
are equal etc., this goes similar to the theorem, where you prove every vector space as a basis
and any two basis of the same cardinality, either finite or infinite, same… same ideas work here
also.  The only difference is very important difference, is well in the vector space scale you say
that K=L right.  Here in the definition, you might wonder, why do I put the second condition like
this and not L=K (S) , its point to think about it.
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Okay one more example, which also will be used sometime later, which I prepared here only.
So for… if you take polynomial ring in N variables and if you take what are called elementary
symmetric polynomials, in these variables, that simply means you take S1 , which is sum of

these variables,  S2 , which is product 2 at the time, that is  X1 X2+X1 X3+.. .  and so on,

summation X i X j  and so on and Sn is product of all.  S3  is a product, sum of the product

of  3  at  a  time.   So  these  symmetric  elementary…  these  are  called  elementary  symmetric
polynomials in  X1  to  Xn .   They arose in the study of equations, mainly Galois, Galois

theory.  They arose because there is a relation between the roots and the coefficients of the
polynomial and the roots, these are the precisely the coefficients of the polynomials, right.  So
what I want to say is, this  S1,S2,... , Sn  is a transcendent basis of the rational functions in n

variable over K.  They are also n in number.  So this is a different transcendent.  Sometime it is
useful to work with this transcendent basis than the variables, okay.
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So with this, I will… I will, for today's thing I will stop the consequences, but now I want to talk
about the refined version of the normalization lemma.  So that is, this is a refined version of
Noether's normalization Lemma.  It was proved by Nagata in 1966 in the famous, in his famous
book Local Rings.  It was published in around the same time.  So I will state for more ideals.  So
if you have a A algebra K… A is a K algebra of finite type over a field K and suppose I have a
increasing sequence of ideals in A, then there exist elements x1  to  xn ch that one x1

to  a xn re algebraically independent over A.

(Refer Slide Time: 12:16)



 And second A is integral over x1  to xn , this is what we had in classical version as well, but

the third condition is now new.  So it says that for each i= 1 to r, there exist a natural number
h(i) , such that when I contract this ideal A i  to this polynomial algebra K [ x1 ,…, xn]  ,

it is generated by the variables x1  to xh(i) .  It could happen that h(1)=h (2) .  It could

happen.  So they are just integers, they are non decreasing.  Okay, so I will… I will be little slow
to prove this, because otherwise, it's too fast, no.  So first I will prove this assertion to the
polynomial  algebra and then we will  worry about finite type later.   So A is  our polynomial
algebra in K [Y 1,…,Y n]  and I am going to prove this assertions by induction on n.  n is the

number of variables.  If n=0 there is nothing to prove, because if n=0 then A is the field and K
and nothing to prove.  So I will assume n is positive.
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And we can also assume that the last… the first ideal is non zero, if it is 0, then you just.. so
once it is non 0, I can chose a non 0 element there, call it x1 , then x1  is not in the field,

because we have considered the chain of proper ideals.  So the bigger ideal, the last ideal is non
unit  ideal,  so  earlier  ideal  is  also  non  unit  ideals,  so  this  x1  cannot  be  in  K,  because

otherwise, it will be a unit.  And hence by,  remember  the  Lemma,  we  have  proved  in  the
first… second lecture that if I have a polynomial in n variables, then I can make a change of
variables, so that it becomes more in one of the variable.  So I want to use that Lemma.  So that
will also show that I can find T2  to T n , so that think of this x1  is a polynomial.  And by

changing the variables, we have seen that that one is integral or the remaining one, right.  So
therefore T2  to T n , there exists T2  to T n , so in that, this algebra A is integral over

this algebra C, which is generated by x1  T2  T n .  So here I recall the Lemma for you.

The Lemma… either polynomial algebra and determinants X is an element in A, X is not a unit,
that is not a constant polynomial, then you can find T2  to T n , such that this is integral or

this…  Remember  what  we  did,  T i  was  (Y i−Y 1)
γ  As  and  we  have  chosen  suitable

gammas.
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And then that, okay, so that was the proof.  So I… we found x… x1  so that this x is… A is

integral  over this  ring C  x1 … generated by  x1T 2  and  T n .   Now let  us put  A ’ =

A [T 2,…,Tn]  and contract these chain of ideal, given chain of ideal study is A ’ .  Then we

get a chain, some of them might become equal, doesn’t matter, and the last, see all proper
ideals.   Therefore  by  induction,  because  now  A  prime  is  generated  by  lesser  number  of

elements, I can apply induction, conclude that there exist x2  to xn  in A ’ , such that, A

prime  is  integral  over  the  sub  algebra  generated  by  x2  to  xn .   x1,x2, ...xn  are

algebraically independent and this contacted ideal to this B ’  are generated by the variables,

that was the third condition in the… Now you put B= B ’  and  x1  generated by…  B ’

algebra generated by x1 .  So we have a chain like this A containing… contains C and contains

B.  These are integral  action chains.   Well  this is  integral,  this integral  by because  A ’  is

integral over B ’  and this is just a base change, because I have adjoined only the x1 .  So

these are integral extensions, so therefore composed with integrals.  So that means A is integral
over this, this proves 2, 2 is… 2 is what integral and we still have to prove 1, that algebraically
independent, we still have to justify.
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But  that  is  obvious  again,  because  you  see  x1,…, xn ,  I  want  to  show  that  they  are

algebraically independent.  Now look at the quotient fields.  Quotient field of A is a rational
function,  and  N  variables,  quotient  field  of  B  is  rational  functions  in  x1,…, xn  and  the

transcendent degree of quotient field of A is n, but this is integral, therefore the transcendent
degree will  not change.  So it is n.  So that means they must be algebraically independent,
otherwise, transcendent degree will be dropped, right.  So we have proved 1 and 2, and now
we want to just prove 3, that means the contractions are generated by x1 ,…, xh(i) .  Now X1

we have chose… x1  what chose in A1, the ideal A1, and x2  to xh(i)  are in A i , and I

want to prove this actually equally there.  So 1 inclusion is obvious by the setup, to prove the
other inclusion, I have to prove that every element which is here is also here.  So start with an
element  here  F  and  write  this  F,  F  is  in  B,  so  F  is  a  polynomial  in  x1 ,… , xn .   So  this

polynomial, I want to split into two parts, the… the first part is the one, which involves x1

and the other part is free from x1 .  So collect all the monomials, which involve x1  and the

remaining one, which is free from x1 , you put it in the other part.  So therefore any F, I can

write it as a x1  times some polynomial in x1 ,… , xn  plus some polynomial in x2 ,…, xn .
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Now you see here x1  was already in ideal A1 , so it is in every ideal.  So this x1  is there

and by assumption F is there, we started with F in this ideal,  x1  is already there and F is

there, therefore H is there.  So h of x2 ,…, xn  belong to this contraction ideal, but this ideal is

same as A prime AI prime B… B prime and by induction hypothesis, this was generated by x2

to xh(i)  so therefore h x2 ,…, xn  belongs to x2  h(i) , because x1  is already there.

So this proves that F=x1 g+h , which belongs to this and we are done.  So that proves this

refined version of normalization Lemma for the polynomial case.  I would like to take a little bit
gap here to ask me if it was okay or shall I repeat some part?
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Sorry…

Why do we need to refine?

Because you see, it is always better to have a description of ideal, which is generated by the
variables.  See instead of studying ideals in a polynomial ring where you don’t know what the
generators,  the  structure  of  the  generators,  this  way  you  can  actually  deal  with  the  ideal
generated by variables, which are more easier to deal with, for calculation purpose.  Also some
of the earlier observations, also you use a more general version, it will  become easier.  For
example, when we prove the dimensions are equal,  if  I  directly apply the third part  to the
ideals, prime ideals, then it will also tell you that dimensions are equal.  Of course we… we use
the integral extensions etc., but this will also tell that… tell that the dimensions are equal.  Okay
so shall we continue this?  So now I have to prove that general case.  The general case is not so
difficult.  So general case means, we are assuming now that we have proved the statements 1 2
3 for the polynomial case and we want to reduce it for arbitrary of n algebra.  So anyway, any…
every fine algebra, there is a subjective map from the polynomial algebra to the given algebra.
And now given chain of ideals, I am going to contract it.  So the chain of ideals were in A, so I
am going to pull it back to the polynomial algebra.  So I will get a chain and also I will get one
more… one more element in the chain, the first one that… namely the kernel, because once I



pull it back, all of them will contain the kernel.  So Kernel will be another ideal here, which I call

it A0
’ .  So the pull back chain now is A0

’  contained in A1
’  contained in A r

’ .  And now

I apply the earlier case to this chain, so that means we can find the variables X1  to Xn

algebraically independent, so that A prime… A... A prime is this one is integral over this element

K [X1 ,…, Xn]  and A i
’  contracted to this is generated by this part of the variables.  And

now I  just  have to push it.   Remember here A not  prime,  this  starts  with 0.   A not  prime

contracted to this K [X1 ,…, Xn]  is generated by X1  up to Xh  not and the A i
’  for

example will contract it to H1 .  H1  is bigger = H not.  So it will be later than this, right.
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So therefore, you just look at this cumulative diagram, A not prime is here, this is  Y 1  to

Y n ,  this  is  the subjective map,  and then all  this  are  integral  extensions.   This  is  ideally

generated by Hospital not here, so when I go more in this polynomial ring, you can start with H
not plus 1 and so on.  This is just… this… this is generated by this and this… this ring is what we
found and this is just pushing up, this is just A is nothing but this quotient, this… this one is just
nothing but this quotient this, and you just pushed on the problem here and this is easy to
check that is  A i∩B .   Now B is this, that is… now the variable will  start numbering from

H0 ,.. .  etc.  There is no new ideal involved here, you just have to check.
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