
INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

IIT BOMBAY

NATIONAL PROGRAMME ON TECHNOLOGY
ENHANCED LEARNING

(NPTEL)

CDEEP
IIT BOMBAY

COMMUTATIVE ALGEBRA

PROF. DILIP.P. PATIL
DEPARTMENT OF MATHEMATICS,

IISc Bangalore

Lecture No. – 14
Hilbert’s Nullstellensatz

Okay, so I want to give couple of remarks on this proof. And then we will start reducing the 
corollaries, okay. So the first remark is, so remarks first one is see here in this proof we have 
never use any special structure of the field K, whether it is finite, infinite and so on, it works on 
arbitrary field.

If moreover if you assume that K is in infinite field, if K is infinite, then this change of variable, 
the automorphism we are define here it was not linear because it depended on the γi ’s, the

γi ’s could be bigger, so but in case of infinite field one can choose linear change of variables,
okay. For future we probably I want to say little bit more, so this change of variable time, so for 
example when one say the affine, an affine transformation of the polynomial algebra in, and not 
necessary over a field, so allow me to use arbitrary measuring, because what we’ve used it for a 
field, but the definition makes in for arbitrary measuring of R[X1 ,…, Xn] , affine 
transformation of the polynomial algebra over R means it’s a map automorphism of special type

X1,ϕ , which is given by like this, so let us write capital X has a column X1  to Xn . 

So if I want R automorphism I just have to give values on capital X’s, so I just have to tell you 
where this column goes, so this column let’s say it goes to AX+B , B is also B1  to Bn , 
and where these A is? A matrix, (aij )  is a matrix, it’s in GLn(R) , clear? If the matrix is in
GLn(R)  means it has inverse, so over a wing it’s complicated to check whether a matrix is in
GLn(R) , all that we have to check it determinant should be unity in, determinant of A should 

be unit in R.

In case of field we just have to check it is a nonzero function, so such automorphisms are called 
affine transformations of the polynomial algebra.
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 So for example, for example if you take the matrix A to be the identity matrix En , then this is
translation, then it is ϕ  is a translation.

And on the other hand if B is 0, then it is linear.
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See in our case if B is 0 but it’s not linear, right, so these are not the automorphism we are given 
in the prove of lemma that is not of this type, but if you take, if you assume we’re field to be 
infinite, then you can actually choose like a transformation. 

Actually so K infinite, then you can actually choose, then you can take ϕ  to be what is called 
simple linear, so the matrix, so to give such a transformation I have to give a matrix, 
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so in that case you can take the matrix like this A = diagonal 1, below it is 0 and here you can 
take – a1  so on – an−1 , so that simply means you can take Y i  to be equal to

X i – Ai Xn , I someone to N units. See we have taken in the lemma X i−Xn  power 
somebody, so if K were infinite then you can get away with this small such linear one and clearly
this matrix is you can see, it’s a nice matrix, such transformations are called simple.

In general it is the group of odd, if I write this odd even for a field K [X1 ,…, Xn]  as K 
algebra, so K algebra automorphism of the polynomial algebra over a field in n variables, this is 
your group, and these group is very complex shown as n, for example it is easy to see when N 
=1, what are the automorphisms of K algebra automorphism of polynomial in 1 variable that is 
very easy, they just tell affine linear ones, they’re off the type X going to AX+B, and A is 
nonzero, so that’s very easy to check for n = 1.

Already n =2 it’s a difficult task, and your n⩾3  it’s even more difficult, and even n⩾3  
it’s an open question, so what is the structure of this group? 
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And n = 2 is also quite difficult but known, okay.

So now let us draw some consequences already from the classical version, and then we will go 
on to prove the more complicated one which is due to Nagata which was proved in 60’s. So now,
so consequences, these consequences have lot of geometric meaning, so but I want to do that 
geometric meaning after I have little bit language from the geometry.

So today there will be only the algebraic consequent, written in terms of algebra, so corollary 1, 
this is one form of, this is also called algebraic version of Hilbert’s Nullstellensatz, so Hilbert’s 
Nullstellensatz, this is, I’ll abbreviated as HNS, and just I’ll give some number, 3, this 
numbering comes from the way I’ve arranged the lectures sometime back, so this is also called 
Zariski's lemma, 
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it says if you have a field extension L or K with field extension, and L is finite type over K, L is 
algebra of finite type over K, then L is actually finite, L is finite over K, so in particular 
algebraic, in particular algebraic over, okay, finite extensions are algebraic.

So proof, alright, so by NNL, L is the finite type over K therefore by NNL there exists LMN
z1,... , zn  such that L is integral over the sub algebra generated by this, and this elements are 

algebraic independent, so there exists z1,... , zn  algebraically independent over K with L 
containing this is integral, integral, L integral over K [ z1,…,zn] , but L is a field, this is a field 
and this is a polynomial algebra, and if a field is integral over summering then you would have 
seen that z1  is also field, so therefore this is also field , so this is a field, because it’s integral, 
but when can such a polynomial algebra be a field? The only chance is when m is 0, so that 
implies m is 0. And so that means L is integral over K, but integral in case of basis field in same 
thing as algebraic, 
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but and it’s finite type, finite type algebraic is finite, so finite type, actually finite type + integral, 
this is equivalent to finite.
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Okay, the next one corollary 2, suppose is A is finite type, A is algebra of finite type, and 

suppose m is a maximal ideal, m belongs to SPM A, then the residue field 
A
m

 is finite 

extension of K. Proof, see A is algebra finite type so A is here, this residue field is 
A
m

 is here, 

K is here, K contain, K is contained in A, this is finite type, so therefore this is also finite type 

over K, the images of algebra generators of A will generate 
A
m

 as a algebra, 
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so if this is generated by this small elements x1,…, xn  then there images, further images they 

will generate 
A
m

, so this 
A
m

 is also a finite type over K, and the earlier corollary says in 

this case this is an algebraic extension, that’s what we wanted to proof finite, so by corollary 1
A
m

 is finite over K, okay.
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Corollary 3, so this I will call, this is also called weak form of HNS, I’ll not give the number 
now, when I write the notes I’ll give you the number properly, so this is weak form, K is an 
algebraically closed field, then we have a map from Kn  to SPM of K [X1 ,…, Xn] , 
maximal ideals in K [X1 ,…, Xn]  namely if I have a tuple a is (a1 ,…,an) , then apply to
ma ,ma  is the ideal generated by X1– a1,…, Xn−An , note that clearly this is maximal ideal,
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that is because the easiest way to see that is, let me go to the next one, so the easiest way to say 
that look at the evaluation map K [X1 ,…, Xn]  to K, and the K algebra homomorphism is XI 
going to A, this is K algebra morphism, and kernel let’s call this as ϵ , kernel of ϵ  is 
precisely generated by X1– a1,…, Xn –an , and it’s clearly subjective, therefore this mod 
kernel is actually the residue field is K, so it’s not only maximal ideal but it’s residue field is K, 
okay.

So we want to prove this map is, then the map is bijective that is assumption, so proof this map is
clearly injective, clearly injective, simply you have to check that the ideal generated by

X1– a1,…, Xn –an , and if you take a different point X1– b1 ,…, Xn– bn  these are different 
if a=(a1,…,an)  is different from (b1 ,…,bn) , this is clear because if they are different at 
least one of the component is different 
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and then the difference if this ideals were equal then it will contain both the polynomials X1, 
let’s say without dash, without loss a1  is different from b1 , then this if there were equal 
then this and this polynomial both are there, so there difference is there so a1 –b1  is there, but
a1 –b1  is different, then 0, so it’s unit and therefore it’s not possible, so clearly it is injective, 

so injective because look at the map K [X1 ,…, Xn] , so take any maximal ideal m and take, 
look at this map K [X1 ,…, Xn]  and then go mode it, this is the natural subjection and then we 
have, because K is algebraically closed we are assuming this extension, this extension is 
algebraic that is what we approved in corollary 2, because this is algebra of finite type, this is 
maximal ideal mode, so this is finite type field over K, but K is algebraically closed, so there is 
no algebraic extension rather than itself, 
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so it’s equality here, but then there exists a1 ,…,an  in K such that they are the lift of this so
X i –a i  or X i  is congruent to A i  mod m, but that is equivalent to checking that this point

ideal ma , I wrote now, reading are this ma  is contain in m, but this is maximal, so equality 
here, so that proves that each maximal ideal is coming from point, such maximal ideals are called
points. 
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So I think it’s time, we will stop here and I will continue more consequences in the next time, 
because we should see the power of this normalization lemma, so one more lecture I will lead for
consequences and then we will go on to the more stronger version of normalization lemma which
is due to Nagata. 
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