
Prof.  Dilip  P.  Patil:  So  in  the  last  couple  of  lectures,  we  have  discussed associated  primes
support and a primary decomposition of a module or an arbitrary commutative ring.

Now today, we are going to discuss modules of finite length, and as usual we will assume our
ring  is  commutative  and  V  be  an  A-module.  Now  to  prepare,  first  I  want  to  observe  an
interesting Lemma, which is also known as Butterfly Lemma of Zassenhaus, which said that if I



have V and W are submodules of A-module X and let V ’⊆V , and W ’⊆W   be submodules of V

and W respectively. Then if you look at this question module 
V ’

+(V ∩W )

V ’
+(V ∩W ’ )

, this is submodule of

the above, because W’ is a submodule of W. This is isomorphic to 
W ’

+(W ∩V )

W ’
+(W ∩V ’)

. So we want to

prove these modules are  isomorphic,  and while we call  the Butterfly Lemma,  I’ve  drawn a
picture her. So this picture looks like a butterfly that is why it is called the Butterfly Lemma.

Okay, how does on prove this? So by symmetry, see this -- by symmetry it is enough to prove

that  this  left hand  side  module  is  isomorphic  to  
(V ∩W )

(V ’∩W )+(V ∩W ’)
,  because  if  I  you  have

proved this, and then this equal to this, so that is very easy to see.

Now (V ∩W ) is a submodule of  V ’
+ (V ∩W ), this is bigger one. Similarly,  (V ’∩W )+(V ∩W ’ ) is

submodule of V ’
+(V ∩W ’), because this one is contained here and this one is contained here.

So these are the submodules, and now we have therefore the map. We have a natural map.
This is a submodule of this, this is a submodule of this. So I take this going to this, this question
module, and this one -- because this is a submodule of this. So we have a natural map and this
map is  clearly  subjective,  because any element here  is  coming from this  one,  because any
element here, module of this, it is an element in (V ∩W ), so that is coming from here. So this
map is clearly subjective.

Now therefore, we want to prove that this map is injective, but injective means the kernel
should be contained in --  so remember here,  this  is  the map.  I  want  to prove this  map is



subjective. That means I want to prove that the kernel should be 0. That means, what is the
element in the kernel, the one which goes to 0 here. That means it is in the intersection of
(V∩W) intersection with this module, and if I have proved that it’s contained in this that will
prove the kernel is 0, but this is immediate. I have to prove this equality. Look I have to prove
this equality.

So if you take element in the left hand side, that is of the form x+ y where x+ y is in this as well

as in this where that x is in V ’ and y is in (V ∩W ’ ). Then y is in W, because W ’ is a subset of W,

so y is in W, and therefore, x+ y is in (V ’∩W )+(V ∩W ’ ), because that’s obvious. So that proves

the  kernel  is  0.  Therefore,  the  map is  in  isomorphism,  and therefore  it  too  is  Zassenhaus
Butterfly Lemma.

Now how am I going to use it? So first let us define -- let us make a definition of module V, and
suppose I have a finite sequence of submodules decreasing, where it starts with V and ends

with 0, and then the quotient modules, successive quotient modules, 
V 0

V 1
 and so on 

V m−1

V m
, these

are called quotients of the sequence. So we say that the sequence, the decreasing sequence of
submodules and another one, decreasing sequence of submodules, they are equivalent if the
number of submodules are same, m=n, and there exists a permutation on n letters, such that

the quotients are isomorphic, the  
V i

V i+1
 and  

V σ (i )

’

V σ ( i)+1
’ .  If  these quotients are isomorphic for all,

i=0 ,…,n−1, then we call these two decreasing sequences of submodules to be equivalent.

Also, we say that sequence of decreasing submodules which starts at V and ends with ), there is
a refinement of  a  sequence  V 0 to  V m to  V n,  the  decreasing sequence of  submodules,  the
lengths are different, but we say that this is a refinement of this, if each Vi appears in this

sequence,  V 0
’ ,V 1

’  and  so  on,  if  it  appears  there  somewhere,  then  we  say  that  this  is  a

refinement of this. In other words, we should be able to -- this  V ’ sequence is obtained by
inserting some more terms in the given sequence, then we call it a refinement. So that is what it
is, that all these V is appear in the sequence, then we call it a refinement.



Okay, then. Now very important theorem of Schreier. Schreier’s Refinement Theorem says that
if I have a module and if I have two decreasing sequences, which starts with 0 and ends at V,
this is another one of some modules, they have the equivalent refinements, so the terms may
not be the same here, but again, both of them will be refinement of some bigger sequence. So
we want to prove that this -- we want to refine them both, so that they become equivalent, all
right. So for i equal to -- I am going to insert more terms in both the sequences.

So let us define for  i=0 ,…,n−1 and  j=0 ,…,m−1, m is the number of submodules in the

second  sequence.  So  V ij=V i+ 1+(V i∩W j ) and  it  is  clear  that  V ij⊇V i , j+1,  because  W js  are

decreasing. And what is V i0, V i0 is by definition j=0, so it is V i+1+(V i∩W 0), but W 0 is whole V so

this is V i only and this is V i+1, and that is decreasing, therefore, it is V i. So therefore -- and what
about  V im

,V im
=V i+1, by definition,  (V i∩Wm ), but  Wm is 0, so this is nothing, so this is --  V im

 is

V i+ 1. This is true for all, i from 0 ,…,n−1 and j from 0 ,…,m−1.

So therefore, we have V here, which is V 00, which contains V 01 and we go on decreasing to V 0m,

but V 0mis V 1, because i=0, so this is V m, V 1. And now you start with V 10, V 10 is V 1, so these are
actually same term, therefore, I write equality here. This is again the same, V 11 goes on to be
V 1m, but V 1m is V 2, and so on. So we have such a decreasing sequence and where this equality is
equal to this, this is equal to this and so on. And this last one is V n, which is 0. 



So  therefore,  this  sequence  which  I  have  defined  is  a  refinement  of  the  sequence.  It’s  a
refinement of this given sequence of decreasing submodule  V 0 to  V n, all right. And what are

the quotients?  Quotients  are  of  the refinement,  
V ij

V i , j+1
,  but  these are quotients.  So that  is

because we have noted V im=V i+1, which is V i=1,0, so this is the refinement. So similarly, I can

now use the other sequence to define  V ji=W j+1+(W j∩V i ), and these are for  i=0 ,…,n and

j=0 ,…,m−1.  So therefore, by the same way, we get the refinement Wji. Now i is running
from  0 ,… ,n−1 and  j  is  running  from  0 ,…,m−1,  and  this  is  refinement  of  this,  and  the

successive quotients are 
W ji

W j , i+1
.

But now we want to prove that these quotients are same. So Butterfly Lemma will tell us, when

I apply to V=V i ,W=W j ,V
’
=V i+1 and W ’

=W j+1, we will have this quotients. Just put on the

definitions and apply Butterfly Lemma, then you will get this converted into this submodel and
where this is the quotient of the refinement serial. So we have proved that these refinements
have the same quotients.



But now also, we have to say that the permutations. So because you get the {(i,j) i is running
from  1 ,…,n−1 and j is running from  0 ,…,m−1, and the other way, just interchanging the
coordinates. So the numbers are same. These two indexing sets have the same cardinality, and
the σ is a permutation when you switch the coordinates, it’s a permutation. So therefore, this is
a permutation, so therefore, we have put the assertion that these two sequences have the
common refinement, okay.

Also, I want to recall a definition of a simple module. Simple module means -- first of all, the
module is non-zero and the only submodules are 0 and V. For example, if you are over a field, if
the base ring is a field, then K is simple k-module. More generally if you have a vector space,
then vector  space is  simple  if  it  is  non-zero and the dimension should be 1.  So when the
dimension is 1, this is non-zero, so I don’t have to say it is non-zero. So vector space is simple, if
and only if the dimension is 1.

All right, now how do you test some modules are simple or not? We say a module is -- we want
to test a module is simple, I want to generalize this from the vector spaces. So a module V is

simple if and only V is isomorphic to as an A-module, 
A
m

 where m is a maximum ideal in A. Proof

is very simple.



So suppose -- first assume V is simple, then we know V is non-zero and if I take any non-zero
element of V and take the submodule generated by x, that should be the whole V, because it’s
a non-zero and the only submodules are either 0 or the whole. So therefore, V generated by x
and we have a module homomorphism, f : A→V  just mapping a→ax. This is clearly subjective,
because V is generated by x, therefore, V will be isomorphic to A-module of the kernel of f and
the kernel of f has to be maximal, because A-mod kernel of f is a simple module. It’s isomorphic
to V, therefore, it is a simple module, therefore, it can’t have any proper ideals. So therefore,

A
kernel of f

 has to be field, therefore, m is a maximal ideal of A.

So one way we have proved. The other way, if you have an ideal in the ring A, then the module
A/a is simple if and only if a is a maximal ideal, i.e. -- this is also very easy, because this module
is simple means it is non-zero first, so therefore, A is a proper ideal and there is no ideal in this

residue class ring, because the proper ideal of this ring will give you proper submodule of 
A
a

. So

that proves the proposition.

All right, if you have a module V and a submodule, then the quotient module is simple, if and
only if, first of all U is a proper submodule and every submodule W in between either V = W or
W = V. So this is like a maximal ideal. So submodule -- the quotient module is simple if and only
if -- there is no proper submodule in between a module V and submodule U. Now this allows us
to make a definition, but decreasing sequence of submodule is called a composition series or
Jordan-Holder series, if all its quotients are simple submodules.



First of all, that means these are proper inclusions and you can’t insert anybody in between.
That means you cannot make the sequence refine. So that’s one has written.

So the composition series or Jordan-Holder series means in between any two terms where we
cannot insert any proper submodule for every i. Equivalently, this given decreasing sequence of
submodule has no proper refinement, and in this case, the natural number n, that is called the
length of this Jordan-Holder series.

So the next theorem is Jordan-Holder Theorem, which says that any two compositions series of
a module are equivalent, that in particular they have the same number of terms, so that means
in particular, they have the same lengths. This is very important theorem. It was proved for the
groups first, the abelian groups first. That is because Jordan was studying Galva theory, and
therefore, it was very important to consider abelian groups and Jordan-Holder series like that.
More generally, also consider, one considers such a series for arbitrary groups, but you have to
assume that in the decreasing sequence of subgroups, each one is normal in the next one and
so on, because then the quotients will make sense, okay.

The Jordan-Holder theorem is clear from the Schreier’s Refinement Theorem, because once you
have a composition series, you cannot refine anymore, and therefore, it has to be refinement of
itself only. So therefore, if I take two composition series, Schreier’s refinement theorem says
that they have a common refinement, but each one is a refinement of itself. So therefore, these
two, any two compositions series are equivalent, and in particular they have the same number
of terms and the same quotients also. So that is Jordan-Holder theorem.



So remember that the Schreier’s refinement theorem is more general and it was proved later
than the Jordan-Holder theorem. But now the proofs,  I  have used the theorem, which was
proved later, because it was more general, anyway. So now, we can make a definition, an A-
module V, which has a composition series that is called Module of Finite Length, and in this
case, the length of that composition series of V have the same length. This is very different,
because we have just proved in a Jordan-Holder theorem that any two have the same length.
So this length is well-defined and that length, we call that is a length of V and it is denoted by
lA(V), so length of V as an A-module.

Okay,  note  that  when  will  he  length  be  0,  that  means  the  Jordan-Holder  series,  it  has  a
composition series and that has only one term, namely 0. So V is 0, that is equivalent to saying
V is  0.  When will  the  length  be  equal  to  1,  that  means  V  has  to  be  simple,  because  the
composition series starts with V and ends with 0, and there can’t be any more terms, because
all the terms are not there because the length is 1, and therefore, the quotient is simple, that
means V 0 is simple so that is V is simple.

So if a module does not have composition series, then we will say that module V is not of finite
length, and in that case, we will put length of V to be infinity. All right, now we have to make a
criterion. How do we decide whether a module has a composition series or not? And now we
are discussing that. So the corollaries, which I deduced from Jordan-Holder theorem that will
lead to some answers. All right, so suppose I have a module of finite length, then any strictly
decreasing sequence of submodules can be refined to composition series, but the assumption is
V should have finite length, okay. In particular, the length of every such sequence is at most,
the length of the module V. This should be (V).



So this is also immediate from the refinement theorem, because given the sequence, I will keep
refining it and already I know there is a composition series for V that exists, because V is a finite
length,  and  these  I  have  by  inserting  more  and  more  terms,  I  refine,  and  make  it  the
composition  series.  But  then  these  two  composition  series  have  the  same  length,  and
therefore, these m will be at most length of V, because length of V by definition length of a
composition series.

Now this one, the next proposition will allow us to compare the length of a module and its
submodule and the quotient module. So if U is a submodule of V, then length of U as A-module

and length of 
V
U

 as A-module, that is same thing as length of V. All right, so this formula is even

true for when the length is not finite, okay. So that is -- the next statement is if the length of V is
finite and you U is a proper submodule of V, then length of U is strictly smaller than length of V,
because we can increase the composition series at least by 1. This is triviality.

So length of V is finite and U is non-zero, then length of the quotient module is strictly less than

length of V. If length of U is finite and length of 
V
U

 is also finite, then length of V is also finite.

This is also easy because length is finite, so U has a composition series and this is finite, so it has
a  composition  series.  So  lift the  elements  in  the  composition  series  and  you  will  get  a
composition series. So I will not prove this proposition. It is left as an exercise, all right.

So similarly, we can deduce immediately from this. If I have short exact sequence of A-modules,

V ’→V →V ' ', this is a short exact sequences, means here the kernel of this map is equal to the
image of this map; this map is injective and this map is subjective. That is the meaning of the



fact that this sequence is an exact sequence of A-modules. Now, the assertion is if V is of finite
length, V is finite length if and only if -- this middle one is finite length if and only if the outer
ones also are of finite length, and in that case, the length is additive. That means length of the
middle one is length of V ’ plus length of V ‘’.

All right, this is because you can think this is a submodule of this, and V ‘’ is quotient module of
this.  So the earlier preposition will  tell  you this length is additive. So this is also -- see this
property can be described by saying that length is an additive function on the category of A-
modules, okay.

More general version of this corollary is, if you have a long exact sequence like this, which has
many terms, so that means you have the maps and at each stage, kernel equal to the image,
kernel of the later map is the image of the earlier map. There you call such a sequence should
be exact sequence of A-modules.

Suppose if this sequence of modules, all but one of them is -- or suppose that all but one of the
Vi are of finite length. That means only Vi may not be finite and all others are finite length, then
the assertion is the remaining Vi is also finite length, and in that case, we have alternating sums
of the length is 0. So this assertion is trivial for any n⩽1, because there is only either 0 term or
only 1 term. In that case, the associated -- this is isomorphism, so this is equal to this, therefore
-- so assertion is clear for  n⩽ ( n−1 ). So I am going to prove the assertion by induction on n.
Therefore, we assume first n is at least 2 and I am going to put this kernel -- so we know kernel
of f 1 is equal to image of f 2, and I am going to call it U.



Then we can break this long exact sequence into two exact sequences, namely if U is a kernel of
this f 1, so therefore, we have short exact sequence, and now, this U is also the image of f 2, so I

will forget  V 1 and put it at U, and therefore, this sequence is clearly exact. So these are two
exact sequences. Now this length has -- I can apply the induction, and therefore, the assertion
follows by the above corollary, because for this alternative sum is 0 and for this, I will replace
the length of U by coming from here, alternating sum again, so therefore, the assertion is clear
by induction on n.

And we will continue after the next break, so that we will connect this concept of finite length
of with the support and associated prime ideals and also relation with the Noetherian and
Artinian modules. So thank you.


