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Right so let us begin with today’s topic. So this is going to be abstraction of linear algebra. So

the concepts that we have studied namely Rn’s and so on, they are going to be at abstract

now. The reason being these concepts are used in other branches of mathematics as well as

other branches in engineering and sciences. So let us begin with structure called vector space.
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So the prototype for a vector space is Rn. So where there are vectors, you can add vectors,

you can scalar multiply vectors with various properties. So a vector space V is a non-empty

set and will denote by F the real numbers or the complex numbers. So the set, on the set V

there are two algebraic operations defined. One is called addition, so for elements a and b, so

we look at V x V.

So an element in V x V in ordered pair so a, b that goes to an element in V which is denoted

by a+b.  So using  the  binary  operation  of  addition  defined on the  set  V and there  is  an

operation called scalar multiplication which is a function form the underlying field F which is

R or C x V to V. So given a scalar and given a vector, we will call it as a vector alpha, a. It

gives you something called the product alpha, a sorry lambda, a. 



So these are two operations defined on vector space, one is addition, other is we call it as

scalar multiplication.
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These  are  properties  that  the  vectors  in  R3,  R4,  Rn have,  addition  is  commutative,  it  is

associative, there is a say weak element 0 in V a zero vector such that a+0 is a and that is

same as 0+a because of commutativity and for every a there is this negative of a, so that a+-a

is=0 and scalar multiplication distributes over addition so lambda scalar multiplied a+b is

same as lambda a+lambda b.

And similarly if you add two scalars and multiply with a then this lambda a+mu of a. So this

is  regarding  addition  and  here  is  there  is  multiplication  of  scalars.  So  that  says  lambda

multiplied with mu of a is same as lambda mu multiplied first and multiplied with a. So

normal properties that we know of scalar multiplication in R3, so these are made as properties

defining properties of scalar multiplication and the abstract vector space.

And finally 1 times a the scalar 1 in the field is=a, so that is a normalization one calls.
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We have said here that these are unique 0 and –a but those can be proved using the properties

and one can also prove obvious facts that 0 times a is 0 is lambda times 0 and -1 multiplied

by so this is additive inverse in the field and that is same as – of a. So these are some obvious

properties that one can prove using these axioms itself. So we will not prove that. We will just

assume because we do not have that much time.

But  it  is  a  nice  thing  to  reduce  these  properties  from the  basic  axioms  of  addition  and

distributive properties right.
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So let us look at some examples of vector spaces. Rn and Cn are the prototypes of vector

spaces. So you can take vectors Rn that is n components right. So two vectors you can add

them component wise and scalar multiple is multiplying each component by that scalar and



similarly Cn. So Rn is a vector space over the reals. Cn can be treated as a vector space over

reals as well as a vector space over complexes.

So the underlying scalars you can choose whichever you like.  So that will  give you two

different objects. One will be Cn as a vector space over R; another will be Cn as a vector

space over the complex numbers itself. This also we had studied that look at the null space of

a matrix A. So given a matrix, look at the null space, that is Ax is=0, all solutions you saw

that that forms a subspace of Rn, we call that as a subspace, so which is a vector space in

itself.

You can also look at all matrices m x n, real matrices or complex matrices. So that is the set

V. You can add two matrices right; you can take a scalar multiple of a matrix that will have all

those properties that you have been actually using them. So that this is a vector space, all m x

n matrices form a vector space over the field of real numbers and complex numbers right, all

m x n with complex entries.

Again, this can be treated as a vector space over R or over C both, both are possible. Let us

look at something which you might not have come across. We will look at all polynomials of

degree<or=3.  So  look  at  all  polynomials  of  degree<or=3  with  coefficients  being  real

coefficients  right.  So  what  does  it  look like?  It  is  expression  of  the  form A0+A1x+A2x

square+A3x cube right where x is a variable right where A0, A1, A3 are scalars, real scalars.

You can also think of complex polynomials over the complex numbers where the coefficients

are  complex  numbers.  Why this  forms  a  vector  space?  Given  two  polynomials  right  of

degree<or=3 you can add them, you will again get a polynomial of degree<or=3, you can

multiply a polynomial by a scalar. So only the coefficients of the powers will change right but

the degree will still remain<or=3.

And it has all those properties that of commutativity, associativity and so on. So these are

yeah “Professor - student conversation starts.” Yeah, you can have anything. So that is the

next thing. See this you can have Rd polynomial have to be<or=any number d right. So all

will be different vector spaces, examples are different right. The constant polynomial there is

real number itself right. R1 is the real number itself, you can have R2x right.  “Professor -

student conversation ends.” 



All linear polynomials, all quadratic, all cubic right and so on. So they all are different vector

spaces okay. You can also think of all polynomials, all real polynomials, whatever the degree,

put them all together in a box. So what is this Rx? It is nothing but the union of R and x

where n goes from 1 to infinity, take any polynomial or any degree so that is an element of

Rn. So how do you add them? How do you add a cubic and a polynomial of degree 5?

You can treat cubic also as a right polynomial but not of degree 5, it is polynomial of degree

3 only but the coefficient A4 and A5 are 0 right. So you can treat as a polynomial right with

x5 but then you can add them. So basically the idea is given any two polynomials of any

degree, different degree you can add them by adding coefficients of like powers right that is

what we have been doing all along actually right.

So that addition becomes commutative, associative and so on. So that is the space of all real

polynomials  or you can also have complex polynomials and the coefficients  are complex

numbers.  So  these  are  examples.  This  is  something  that  you  will  come  across  in  your

differential equation scores. Look at the solutions of the differential equation y double dash+y

square y=0 or y dash+q x*y=0. Look at so what do you mean by solutions of this equation?

We are looking at a function y which satisfy the properties double derivative+y square y=0

right. if we have two solutions y1 and y2 and if we add them that will again be a solution of

the same equation right. If y1 satisfies this, y2 satisfy this, y1+y2 also will satisfy the same

equation.  So  addition  is  defined,  scalar  multiple  again  will  define,  it  is  something  as

homogenous, right side is 0 so that is not going to change right.

So this is normally one calls the homogenous differential equation but will study these things

in differential equations or solutions of this type okay. So this is a second degree differential

equation, this is what is called the first degree differential equation. So if you have already

done a course in differential equations, you might have already come across. If not when you

do it, you will come across these things.

You can also look at this in the vector form, so this is a vector that means it is y1 t and y2 t,

these are the two components of this and you can have satisfying the equation y dot dot. What

is y dot dot? So that is equal to the second derivative of y1 and second derivative of y2. So



the notation for that is=Ay. So solutions of this also will form a vector space. So that is one of

the reasons why these vector spaces are important, abstract vector spaces because you find

applications in study of differential equations, so these are some of the examples.

So let us go and start further, what did we think do in when we have subspaces of Rn? We

started looking at given a subset of vectors, we started looking at linear combinations of

them, we started looking at generating a subspace with them, then started looking at when is a

minimal set of generators right, we call that as a basis and so on. So same things are possible

here in abstract vector spaces also.
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But before that let us just look at if you look at all real matrices the entry is bigger than or

equal  to  0.  Does  this  follow vector  space  another  addition  of  matrices?  We got  all  real

matrices m x n okay such that all the entries are bigger than or equal to 0. Do you think this

forms a vector space? Of course, if we add we will get again a matrix of the same type but if

we multiply by a scalar you may not get the matrix of the same type where the scalar is -1.

If all entries are positive, will you multiply by -1, you get all entries negative right. So that

will not be an element, so scalar multiplication, the usual scalar multiplication does not work,

may be some other scalar multiplication you can define. So that says that for a vector space, it

is a set which is important, it is important also what is the operation of addition defined on it,

what is the operation of scalar multiplication defined on it right.



It should have all those properties and whether it is over real numbers or it is over complex,

so you can think it like 4 things in a vector space, a set, addition, scalar multiplication and the

underlying scalars. All these 4 put together characterize a vector space. If any one of this

changes,  then you get  a  different  example  of  a  vector  space  okay. For  example,  look at

solutions of this xy dash+y=3x square.

If you take y1 and y2 to be solutions of this differential equation that means what, that means

xy1 dash+y1 is=3x square and y2 with another solution, so xy2 dash+y2 is=so can we say

y1+y2 also  satisfies  this?  Because  if  I  put  y1  and  y2;  however,  this  will  give  you two

derivatives, this will be y1+y2 but right hand side you will get, you will not get 3x square.

When you add those two equations, we will get 6x square right.

So it has only (()) (14:00) 0, it  became a right vector space. So this  is not, so the usual

addition  of  functions  and scalar  multiplication  will  not  give this  as  a vector  space  right.

Similarly, of y dash+y square, so these are something which are nonlinear. So this is non-

homogenous if the right hand side is not 0 and here it is y square coming so it is nonlinear

part coming right.

So that is why they told bigger subspace, so study of nonlinear differential equation and non-

homogenous differential  equations  will  be a part  of your course on differential  equations

right. So let us define the concept of the subspace. Given a vector space and given a subset

right, we can think of creating subset itself as a vector space but that is possible only when

given two elements of the subspace, you add you again get an element of that subset right.

And scalar multiple also should be part of it, so a subset is called a subspace if given two

elements w1 and w2 and two scalars if you take a linear combination of that that should be

again  inside  the  same  set  right.  So  in  that  ways  a  subset  which  is  closed  under  linear

operations of addition and scalar multiplication can be treated as a vector space in its own

right, so we call that a subspace right with the same addition and scalar multiplication taken

from the original one okay.

So  for  example  okay,  so  let  us  look  at  all  polynomials.  We had  a  vector  space  of  all

polynomials.  Look at  polynomials  of degree<or=5. That  is  the subset  of the space of all

polynomials  and  if  I  take  any  two  polynomials  of  degree<or=5  and  add  again  get  a



polynomial  of  degree<or=5.  A scalar  multiple  again  has  the  same  property  if  it  is  a

polynomial of degree<or=5, scalar multiple again is.

So  you  can  treat  polynomials  of  degree<or=5  as  a  subspace  of  vector  space  of  all

polynomials. So each polynomial of any degree, so <or=n right can be treated as a subspace

of all polynomial. Quadratics can be thought of right as polynomials of the degree<or=2 as a

subspace of cubics polynomial<or=3 right. That is also possible, so all these are subspaces.
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So now question is how do you describe a vector space? So let us look at what is called linear

combinations. So once additions is there, scalar multiplication is there, given elements v1, v2,

vk and given scalars c1, c2, ck, you can form this new element right. So this is called a linear

combination of the vectors v1, v2, vk. Keep in your mind the prototype of Rn, something

similar happening but we cannot say that V is Rn or Cn or anything.

V is a subset, for example you can take polynomials v1 could be a quadratic, v2 could be a

cubic and so on, you can add them, will again get a polynomial right. So given elements of a

vector space, you can form and scalars you can form a linear combination of that. So that is

this element and we can put together all the linear combinations in a box and we will call that

as a span of that set right like so given a set S subset of V.

Look at all sigma alpha i vi where this n is n could be any number, could be invertible 3, 4

and you can choose any finite number of v1, v2, vn in S, take same number of scalars in F

and form the linear  combinations.  So what  is  this  called?  So this  will  be  a  finite  linear



combination  right.  This  is  the  linear  combination  and we are  defining  only  finite  linear

because there is infinite we do know how to add them anyway.

In the vector space, you cannot, there is no concept of adding infinite number of them right,

only finite number is possible because you can add again and again till the finite state. So

look at all linear combinations of elements of S okay where n is varying, alpha i's are varying

and vi’s varying, so all possible linear combinations call that as the square bracket as one

control easily.

And if  you take two linear  combinations then some is again a linear combination,  scalar

multiplication  is  again  a  linear  combination.  So this  is  a  subspace  and this  is  called  the

subspace generated  by S right.  So given a  set  S in  a  vector  space  what  is  the subspace

generated by it? It is the set of all possible finite linear combinations of elements of S right.

That is called the subspace generated.

So here comes if S itself is a finite set such that the space generated by S is V. We say it is a

finitely generated vector space. If V is a vector space and you have order finite subset of it, so

that when I take linear combinations of elements of that finite set that gives me everything in

V right, every vector in V can be obtained as a linear combination of elements of that set S

and if that S is finite, we say our vector space V is finitely generated right.

Finite number of elements of V give everything to add linear combinations. If it is not, then

the set is non-finitely generated vector space. That is where abstract vector spaces will start

differing from Rn and subspaces of Rn. So let us look at some examples of this.
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Rn and Cn are the finitely generated. Hence we know that standard basis is there 1 0 0 0 1 0

right. That is a standard basis for Rn similarly for Cn. Null space, that is a clear subspace of

Rn. So that is also finitely generated and actually  that  became an important  thing in our

solving system of linear equations. How to find the basis for N of A? What is the dimension

of N of A?

We call that as a nullity and finding a basis for N of A right that is the solution space of a

homogenous system. All matrices do you think all matrices form a finitely generated that

means what? Every matrix m x n can be obtained as a linear combination of some finite

number of matrices. Let us look 2 x 2 for example, A, B, C, D right. I can write this as take

the first element as A, all remaining 3 are 0.

Next, B all these 3 remaining elements 0, so we can take 4 matrices where first write one

element is the A B C or D and the remaining 3 are 0. If I add these 4 matrices, I get the matrix

A B C D and A can be taken out. This is A times 1 0 0 0 B times 0 1 0 0 and similarly other

two. So basically what we are saying is we will look at a matrix m x n, it is nothing but R to

the power m x n.

Think it now. How many elements are there in a matrix of order m x n? Is m times n right,

instead of only for convenience we are adding first time elements as first row right, second as

second row, third row, fourth row, mth row right but if I write everything as a 1 string first

row right and then the next row and then the next row but written as one long string of

elements. How many elements will be there? m x n.



So I can identify a matrix of order m x n with R to the power m x n and what is the basis for

R to the power m x n, standard basis? 1 at one place and remaining all are 0 that is what we

are saying. There is a basis for matrices also essentially right and actually it is not just for the

sake of (()) (23:16) basis, that is how the computers stores your entries of a matrix. Computer

does not know what is a row, what is a column right.

A machine only knows a string of elements that you are giving to store. You say 5 as a first

element, so it has binary without storing, so it will store 5. Next element, next element, next

when one row is over, you have to give some command to say that now you are starting a

new counting right. That is possible to a computer. So first n elements is first row, next n is

second row, next n is third row and so on.

So that is how the computer stores the data in it right. So that is a way we are saying we can

find a basis for m matrices of all that m x n also.


