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So how did we; I am revising what we have done. How did we start off the course? We started

looking at,  how does linearity  arise  in  real  life.  And that was Systems of Linear  Equations.

Trying to find solutions of Systems of Linear equations and the method given by Gauss that is

eliminating one variable at a time we want to do formalize it. So to formalize that we brought in,

what is called the Matrix representation of a system of linear equations.

That look like Ax=B, right. A is a M cross N matrix, right. M equations and N variables, so X is

the vector which is components written as a column x1, x2, xn = B; b; b1, b2, bm. So that is

Ax=B where A is M cross N, your variable X is a vector which is N cross 1, right; one column, N

rows and one column and that is equal to b1, b2, bm; that is M rows and one column, right. So

matrix form, so the question is how do you solve Ax=B, right.

We said the method of Gauss is nothing but reducing the matrix A to row equivalent form or

specialize one called reduced row equivalent form. So what is the row equivalent form? Row

equivalent  form  of  a  matrix  is  that  by  elementary  row  operations,  right;  elementary  row

operations are you can multiply a row by a nonzero scalar. You can add one row to another, or

you can interchange two rows. So these are called elementary row operations.

By doing these operations alone you can bring your matrix to a special  form. You are doing

something on the rows and the row equivalent form is essentially says, in your matrix, right,

there will be some bottom rows which are going to be 0 possibly, right. There are some nonzero

rows and some rows which are identically 0. So suppose there are r rows which are nonzero they

are at the top n-r are at the bottom, right. So it says, that, this r, we give it a name called the rank

of the matrix, right.



And so there is a number r such that r between 1 and N such that bottom r, top r rows are nonzero

bottom rows are 0. Now why a row is nonzero? Because somewhere a nonzero entry is coming,

so how do we describe that? You look at a row, first row; first spot the nonzero entry. It comes at

a column called P1. Look at the second row, the first nonzero entry comes at a place called P2

column number P2. So the condition is P2 should be bigger than P1.

Each next row nonzero entry should be coming in a column which is in the right side of the

earlier one, right. It may not be immediate right it will be somewhere on the right. Okay. So that

form of the matrix is called row equivalent form. And you can further do row operations, so that

in that column one nonzero entry is there, right; there is a nonzero entry, below that everything is

0. So, that entry is called a pivot.

In that, everything on the top also you can make it 0 by elementary row operations. So in pivotal

columns where the first nonzero entry of a particular row is coming, by row operations further

you can make; that is the only nonzero entry everything else is 0 and that nonzero entry also you

can divide by that constant and make it equal to one, right. So that is called the reduced row

equivalent form of the matrix.

Then we looked and applications of this. One linear system is consistent or inconsistent of rank,

so take the Ax=B, take A, augmented matrix AB, right; reduce to row equivalent form. If the

rank of A right is same as the rank of B, then the system is consistent otherwise if it is bigger one

more then it is not consistent. When it is consistent that means what there are r pivots among the

r n variables there are r pivots, right the P1, P2, Pn are coming in the columns.

So those pivotal variables their values are obtained from the non-pivotal variables; by giving

non-pivotal  variables  arbitrary values  and backward substitution.  So take at  the bottom row,

right, compute the pivotal variable in terms of non-pivotal ones. Give them arbitrary value, put

back, put back and get your all solutions, right. That is how finding all possible solutions.

And then we also said that,  solving a  system Ax=B is  essentially  equivalent  to  solving the

homogenous part of it, Ax=0. What is the difference? You find one particular solution of Ax=B



somehow and find all solutions of Ax=B so general solution is obtained by taking one particular

solution adding to it a solution of the homogenous system, right. That gives you all. That also

brought, okay, we will come to it a little bit later.

But  row equivalent  form also  gives  you a  method  of  checking  whether  a  square  matrix  is

invertible  or not,  right.  So, if  it  is  going to be invertible  that means there should be unique

solution for Ax=B. That is same as equivalent to saying rank should be full; and that is same as

saying when you reduce row equivalent form that should be identity. So, a method of checking is

take A M/N, put along with identity matrix N/N and do row operations to A and do the same

operations to identity also and try to find out what is the row equivalent form of A.

If this becomes identity the next portion gives you the A inverse where the identity has changed

to, right that becomes A inverse in finding what is, how to check whether something is invertible

or not and same time computing the inverse also, so that is application of row equivalent form,

another one. Then we looked at matrices and we looked at the row space and the column space,

right. They are all; subspace is of Rn and Rm, right.

What  is  a  subspace?  It  is  a  subset  of  Rn or  Rm so  then  in  itself  it  is  closed  under  linear

combinations,  right  that  is  a  subspace,  okay. For  example,  in  R2 if  you take  a  line passing

through the origin that is a subspace of R2, right because if I take any two points and add them

we will be somewhere on the line again, right scalar multiple also, so that is subspace. So Row

space, column space and then we looked at what is the dimension of the row space, dimension of

the column space and we said both are same that is same equal to the rank of the matrix, right. 

And what is dimension of the space? That was involved what is called a basis and the number of

elements in a basis. So we said every subspace of a vector of Rn or Rm will have a basis. What is

a  basis?  You take  linear  combination  of  a  subset  B is  called  a  basis.  If  you take  all  linear

combinations of elements of that, that should give you all elements of the space and it should be

minimal. You should not be able to reduce number of; you should not be able to remove some

elements from that.



So it is a minimal set of generators equivalent to; it is a maximal linearly independent set. So

those were equivalent ways of describing what is a basis and then we proved, we did not prove;

we said the theorem, that any two basis has a same number of elements, vector subspace can

have different basis; remember, r3 itself has different basis, right, we gave many examples. But

the number of elements in a basis will always be same and that is called the dimension of the

space, right. 

So we had dimension of the column space, dimension of the row space and we also had the

dimension of the null space Ax=0. That was called the nullity. So we had the theorem, Rank

Nullity theorem, the rank + nullity= n. right. That was the rank nullity theorem we proved. And

that  had  some  applications  namely  every  matrix  or  every,  okay  we  came  to  linear

transformations. Rank nullity theorem for linear transformation and the dimension of the row

space plus dimension of the range space, right. That as a consequence, okay.

I think more systematically we looked at matrix multiplication as a linear map, A applied to X=Y

that is a linear operation on the domain XY. So, you can call that as a linear map induced by a

matrix and conversely every linear transformation from one vector space to another; of course

vector space is subspace of Rn gave rise to a matrix representation of the linear transformation.

So, how was that obtained?  Say t is from v to w, v of dimension 2, w of dimension 3, right.

So v of dimension 2 it has a basis element of v1, v2, w dimension 3, it has basis elements w1,

w2, w3. So take v1, take the image of v1 under t then go to some vector in w but that should be a

linear combination of w1, w2, w3. So ev1 is a linear combination, so those scalars which are

coming in the linear combination that give you the first row. E of v2, again a linear combination

that gives you the second row, so take the basis elements in domain each one take the image and

write it as a linear combination, you get the corresponding columns of the matrix representation. 

So that is the matrix representation of a linear transformation. And then as a consequence of rank

nullity theorem, we said t is 1, 1 is same as t is 1, 2 as maps. So that is what we proved, so that

was  linear  transformations  basis  of  linear  transformations,  rank,  basis,  dimension.  Then  we

looked at generalizing the notion of angle in vector spaces, right because there is a notion of



angle, dot product in Rn, so that we brought in the notion of perpendicularity, two vectors are

perpendicular if the dot product is equal to 0.

So, we said given a basis, can we generate  an Orthonormal basis out of it,  right.  A basis is

linearly  independent  of  vectors  which  generate  everything.  Orthonormal  is,  those  every

orthogonal collection is also linearly independent automatically, right. That is a simple property

that  we proved.  And then  we said  that,  every  linearly  independent  need  not  be  orthogonal,

obviously.

So how do you get from linear independence to orthogonal that is Gramshin process? So given a

linearly independent set; one by one iteratively you can generate a basis which is a orthonormal

basis, right. So, once that is obtained, that means, what is the advantage of orthonormal basis? It

says that coordinates of a vector, see every vector is a unique linear combination of the basis

elements, right.

Every v is sigma alpha vi, where v and i are basis elements, this alpha i's are unique, right. That

is what we called as the coordinates of the vector. These unique coordinates are immediately

known if the orthonormal basis is given, because they are just a dot product. If you take the dot

product on both sides of a particular vi the right side is vi vj, everything will vanish except vi, vi,

right.

So that means, advantage of an orthonormal basis is that coordinates of a vector are immediately

computable, right if your basis is orthonormal. That is why we prefer to have an orthonormal

basis whenever possible and that is Gramshin process, right. And then we looked at a particular

case that given a matrix how can we make it similar to a diagonal matrix? That means finding an

invertible matrix P such that P inverse AP is diagonal. That was diagonalization process for the

problem.

We said, this leads to computation of eigenvalues, computation of Eigen vectors and checking

when are the Eigen vectors linearly independent and they forming basis of the underlying space

if the matrix is M cross N, that should form a basis of Rn, right. So; computation of Eigen values



that led to determinant of A- lambda i because A- lambda i you want a solution of that, a nonzero

solution. That means A-lambda i should not be invertible, right. Then only it is possible. 

If it is invertible, only unique solution for homogeneous system that is a tribal one. If you want a

nonzero solution then the determinant of A-lambda i should be equal to 0, because it has to be

singular. That means, solving the polynomial, finding roots of the polynomial determinant of A-

lambda i. That gave you the Eigen values. How do you find the corresponding Eigen vectors?

The solution of A- lambda i  applied to X=0, you have to find x.  So finding solution of the

homogeneous system where a matrix is A- lambda i. 

And for that we know, go back to row equivalent form and see what is the rank, what is the

nullity, so null space you want; all possible solutions, right then find the dimensions of the null

space, those many linearly independent Eigen vectors you can obtain. And we proved a theorem

that a distinct Eigenvalues, Eigen vectors are linearly independent. The general matrix the Eigen

vectors are corresponding to distinct Eigenvalues are linearly independent, right.

Now the question is only inside for a particular Eigenvalue, if you look at all Eigen vectors,

right, they form a subspace. Okay. The question is, whether dimension of that subspace is same

as the number of times a root is repeated or not? The number of times the root is repeated it is

called algebraic multiplicity; the dimension of the null space of A- lambda i is called geometric

multiplicity; whenever the two are equal your matrix will be diagnosable.

Because that says you will be able to find as many linearly independent Eigen vectors as the

number of times Eigenvalue is repeated, right. So that was Eigen’s ability of arbitrary matrix.

That may or may not happen. So the condition is you should have Eigenvalue, each Eigenvalue;

algebraic multiplicity should be equal to the geometric multiplicity, right. And there should be n

Eigenvalues and that happens if your matrix is a real symmetric matrix. 

For a real symmetric matrix, you are assured that there will be as many Eigenvalues as is the

dimension that is M cross N where n is the dimension of the matrix. There will be n Eigenvalue

even if an algebraic multiplicity of each will be equal to geometric multiplicity that is also part of



the claim that is the part of the theorem. And thirdly, you can find a orthonormal basis for Eigen

vectors. For any two distinct Eigenvalues, the Eigen vectors are perpendicular to each other.

But, inside there will only be linearly independent for each Eigenvalue; using Gramshin you can

ortho-normalize it. So that is what we did today. Okay. So that is our 5 minutes; 10 minutes, I

have revised the whole course. So next two lectures, what I am going to do is, I am going to look

at abstract vector spaces; vector spaces other than subspaces Rn or Rm itself. They also come

your courses later on. So we will spend some time on that. Okay.

So we will stop today. We will not go to them today itself. So, today’s lecture ends here. Okay.


