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Okay so let us begin today’s lecture by recalling the last lecture we had proved the following

theorem.

(Refer Slide Time: 00:39)

That if A is n x n real symmetric matrix, one it has n real eigenvalues and secondly if lambda

1, lambda 2, lambda k are distinct eigenvalues and ui’s are corresponding eigenvectors then

the set u1, u2, uk is an orthogonal set, so basically saying that for a general for a given matrix

the eigenvectors are linearly independent for distinct eigenvalues. If it is a real symmetric

matrix, then the eigenvectors corresponding to distinct eigenvalues are also orthogonal.

So using this because it has already got n eigenvalues and so there will be n eigenvectors

right  and  we  already  know  that  because  they  are  orthogonal,  they  are  also  linearly

independent.
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So improvement on the previous theorem which was for diagonalizable, diagonalization of

matrices  says  the  following.  That  if  A is  a  real  symmetric  matrix,  then  there  exists  an

orthogonal matrix P such that P inverse AP is a diagonal matrix okay and the diagonal entries

are the diagonal eigenvalues of the matrix A. The column vector P are the eigenvectors of A,

this will be the eigenvectors of A.

So basically the same process that we do for general diagnozability. Given a matrix A, we

find eigenvalues, we find the corresponding eigenvectors right. If it is real symmetry, they are

going to be n eigenvalues right accounting multiplicity, so each eigenspace is going to have a

basis consisting of eigenvector right. So but the only thing is that eigenvectors corresponding

to distinct eigenvalues for real symmetric will be orthogonal but inside the eigenspace they

may not be orthogonal.

They will be only linearly independent,  so what we can do is we can make using Gram-

Schmidt  process,  we can make those eigenvectors  also mutually  orthogonal.  So for  each

eigenvalue  will  have  the  eigenvectors  right,  there  is  a  basis  consisting  of  eigenvectors

because it is diagonalizable. So we can find orthogonal, orthonormal basis convert that basis

to an orthonormal basis.

And this says that for a real symmetric matrix this will always happen right, so for a real

symmetric matrix there will be n eigenvalues right. There is a basis consisting of eigenvectors

right  which form an orthonormal  set  right.  So there is  a basis  consisting of  orthonormal



vectors, so that is what is called the spectral theorem for real symmetric matrices right. So

keep in mind for a general matrix, it may not be diagonalizable at all.

Because it may not have eigenvalues, even if it has eigenvalues the algebraic multiplicities

may not be equal to the geometric multiplicities but for a real symmetric matrix, always there

exist  eigenvalues,  algebraic  multiplicity  of  each  eigenvalue  is  equal  to  the  geometric

multiplicity  right  and  as  a  consequence  it  becomes  diagonalizable  right.  Because  it  is

diagonalizable, eigenvectors corresponding to distinct eigenvalues are mutually orthogonal.

But inside each eigen-subspace right, the basis exists but it may not be orthogonal. So you

can use Gram-Schmidt process to make it orthogonal right. So that is the basic idea of this

spectral  theorem.  The advantage  is  that  this  matrix  P is  an orthogonal  matrix,  so for  an

orthogonal matrix what is P inverse? You know orthogonal means P transpose P is=identity

right, so that means the inverse is the transpose itself.

So there is advantage here that for a real symmetric you do not have to compute P inverse, it

is just the transpose of the matrix P that you get okay.
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So we will look at one example completely illustrating this idea. So look at the matrix A with

the entries  0 2 2 2 0 2 and 2 2 0.  So first  observation is  this  is  a  real  matrix  and it  is

symmetric.  So the row here 0 2 2 is  same as the column here.  So interchange rows and

columns,  this  is  a  symmetric  matrix  right.  So  as  our  theorem  says  it  should  have  n

eigenvalues right.



So that means the characteristic polynomial should be completely factorizable. So here the

characteristic polynomial will be a cubic of degree 3 right. So how do you find that? So look

at A-lambda I, so 0-lambda 0-lambda. So along the diagonal it will become –lambda, expand

that determinant okay. So that determinant 3 x 3, you expand and simplify, it comes out to be

–lambda+2 lambda +2 and lambda-4, so there are 3 factors right.

So that means what? Lambda=-2 is repeated, it has algebraic multiplicity 2 and lambda=4 has

got algebraic multiplicity 1 right. So lambda=4 that is not going to be a problem because that

is eigenvalue lambda=4 you can find an eigenvector corresponding to it right. The only work

to be done is for lambda=-2 right.
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So let us compute that. So algebraic multiplicity of lambda=-2 is 2 and of lambda=4 is 1. So

let us look at the eigenvectors for the eigenvalues lambda=-2. So look at A-lambda I, so that

is A+2I right. So that it is easy to reduce it to row echelon form. So that gives 2 2 2 and 0 0 0,

so that means what is the rank of this matrix? That is 1, that means nullity is=2 right. That

means there is going to be 2 linearly independent solutions for this eigenvalue lambda=2.

So how do you find that? You know the process, so what are the variables which are non-

pivotal? X1 is pivotal, X2 is non-pivotal, X3 is non-pivotal. So non-pivotal variables will be

given the arbitrary  values  and pivotal  compute it  in  terms of them and because here the

dimension is 2, so the methodology is you first give X2=1, X3=0 and find out X1 in terms of

that, so that gives you 1.



And second is  put  X2=0 and X3=1,  that  gives  you another  solution  for  the same eigen-

subspace right a null space and those two are going to be linearly independent automatically

because we have chosen X2 and X3 suitably okay. So just writing this that means it is 2 times

X1 X2 X3 right=0 right. All linear combinations so that in a null space.

(Refer Slide Time: 08:35)

So you get two vectors, eigenvectors for this eigenvalue X1 X2=1 X3=0 and similarly for X2

it is X2 is 0, the component X3 is 1. You compute accordingly other one that is -1 and -1, so

these are the two eigenvectors corresponding to the eigenvalues lambda=-2 right and these

are linearly independent by our choice of X2 and X3. The only problem is that these they

may not be see if you multiply what is the dot product of these two?

So that is -1 -1 that is 1 0 0, so dot product is not equal to 0, so these are only linearly

independent but they are not orthogonal, so will orthogonalize them. Before that let us find

for lambda=4, so A-lambda I so along the diagonal becomes -4 determinant, reduce it to row

echelon form, it comes out this. So one row is 0, two rows are nonzero, so the rank of this

matrix is=2.

So rank is=2, nullity is=1, so only one-dimensional null space. So you can find that, so how

do you find that? What is the last equation? -3 so what will the last equation give you? -3

X2+3 X3=0. So what are the non-pivotal variables? Non-pivotal is only X3 right third one, so

X3 is given arbitrary value, you find X2 from this equation, put those values back, you get



the first variable right, only one solution, non-pivotal gets arbitrary values others are obtained

in terms of the non-pivotal.
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So once you write that you get right you put X2=1, X3 and you get 1 1 1, so these are

eigenvectors for lambda=4. Basically, it is solving a system of linear equations right, finding

rank, finding nullity. So you get 3 vectors X1, X2, and X3 right and that will always happen

for a real symmetric matrix will get 3 linearly independent eigenvectors right if the order is 3

x 3, n x n that we will get n linearly independent eigenvectors for a real symmetric matrix.

Now in this observe, these X1 and X2 were the eigenvectors for the eigenvalue lambda=-2

right and X3 is for lambda=4. So X3 is perpendicular to x2 because they are for distinct

eigenvalues right and X1 is also perpendicular to X3, you can just dot product and see that

is=0. So eigenvectors corresponding to distinct eigenvalues will  be orthogonal but among

themselves X1 and X2 are not orthogonal to each other right.

So what we do is we know that X3 is orthogonal to these two, so that is not a problem. So

these  two  we  make  them  perpendicular  to  each  other  by  using  Gram-Schmidt

orthonormalization process right. So what will be my first step? So X1 is not perpendicular,

so we use so if  we are given these 3,  how do you orthonormalize  them? Gram-Schmidt

process from successively you are going to remove the projections right. So let us do that.
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So  define  X1  and  X3,  tilde  to  be  as  it  is  okay,  the  original  ones  because  they  are

perpendicular  to  X1  right.  They  are  perpendicular  to,  X2  is  the  one  which  is  not

perpendicular, X1 and X3 are perpendicular anyway. So let us define that. So X2 is the one

which is  to be defined now right,  either  X1 or X2 one of them you can modify so that

becomes perpendicular right.

So you define X2 so that will be perpendicular to right X1. X1 and X2 are not orthogonal

right; from X2 remove the projection of X1, so that they become orthogonal right. So once

you do that, so that is the way you X2-this projection on to X1 right. They are not orthogonal,

so remove the projection. So once you compute, it comes out to be this. So Gram-Schmidt

process right that is being used to orthonormalize okay.

So  you  get  3  vectors  which  are  mutually  orthogonal.  Gram-Schmidt  only  gives  you

orthogonal  right,  will  remove  the  projections,  you  get  only  orthogonal  but  you  have  to

orthonormalize them if you want right. So then you divide each one of them by the norm of

it.
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So you can divide, so you get these 3 vectors right which are going to be which form a

orthonormal set. They are 3 of them, so they will form a basis for R3 and each one of them is

an eigenvector right because you have taken eigenvector to only modify them, so these are

eigenvectors. So what is the corresponding matrix that you will get? So P is the matrix which

is going to be, columns of P are going to be these vectors.

So first column is the first eigenvector, second column second eigenvector, third the third

eigenvector,  process  is  same  whether  it  is  ordinary  diagonalizable  matrix  or  it  is  real

symmetric. You find as many linearly independent eigenvectors as is the order of the matrix.

If you are able to find, it is diagonalizable. If not, you are which is not diagonalizable. For

real symmetric, you will be able to find 3 not only linearly independent, mutually orthogonal

and orthonormal set of vectors which form a basis, so you get this right.

So first column, second column and that is a third column and this matrix is automatically

orthogonal  because  the  columns  are  mutually  orthogonal  and  unit  length  is  1  right.  PP

transpose is=identity okay. So there is this is a typo here, orthogonal so the inverse right, so P

inverse is=P transpose. So you can write PAP transpose=diagonal, you can verify that okay.

So diagnozability of a real symmetric matrix means first find the eigenvalues, you will be

able to find as many as the order right.

Unlike the ordinary matrix where it may not have any solution at all right, there may not be

any eigenvalue for an ordinary real matrix but here for a real symmetric you will be able to

factorize right and you will get n eigenvalues, some of them maybe repeated right but each



will have algebraic multiplicity same as geometric multiplicity, for a real symmetric algebraic

will be always equal to geometric multiplicity.

Distinct  eigenvectors  corresponding  to  distinct  eigenvalues  will  be  mutually  orthogonal,

inside right the eigenvectors corresponding to the same eigenvalue you are able to find as

many as algebraic multiplicity, they may not be mutually orthogonal. So use Gram-Schmidt

process  so that  you get  orthonormal  basis  right.  So that  is  the  process.  So what  are  the

applications?
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I think in the beginning I had said once you are able to diagonalize the matrix, there is lot of

advantages in that. One is supposing a matrix is diagonalizable, that means there is invertible

matrix so that P inverse AP is=D right. So if you want to compute powers of A that becomes

very easy because if this is=D then what is A is equal to that is PDP inverse right. From this

equation, if P inverse AP is D then what is A?

Multiply on the left side by P, on the right side by P inverse, so you get A is=PDP inverse

right. So what is A to the power k? So it is PDP inverse to the power k. Now when you

expand it what happens? When you expand say 2, when you multiply it will be P inverse A

and the next one will be coming PDP inverse, so PP inverse will cancel right. So it is for any

k this power is P the diagonal matrix raised to power k into P inverse.

So you do not have to do anything other than if it is invertible we find out what is the matrix

D which is diagonal right, which is the eigenvalues of the matrix A. Once you have found



that, powers are very easy to compute, you have to just find D to the power k and for a

diagonal matrix what is the kth power? For the diagonal matrix, it is just diagonal entries

raised to this appropriate power right. Is this clear?

D square is nothing but the diagonal entries raised to power 2, Dk is diagonal entries raised to

power k. So this for a diagonal matrix, it is very easy to compute D to the power k. So this

becomes  very useful  tool  and this  is  useful  when you are doing lot  of  applications.  For

example, there is something called (()) (19:00) where this comes out as a probability. This

matrix A is the probability matrix of going from one state to another of some process right.

So if you are able to diagonalise that right and you want to apply that again and again and see

what happens eventually to the system okay. Let me just give you an idea. If there is a system

which is being observed, imagine and there are two possible outcomes of that system, system

can write, can go in one state or in another state. There is a probability some probability

actually go and stay in state 1, it is some probability it will go from state 1 to state 2 right.

And some probability that will stay in state 2, so you can compute that, you can find that

matrix, first entry will be states 1 1 right, second entry in that row is the probability that from

state 1 to state 2 bottom state 1 to state 2 and then state 2 to state 2 itself. So that is where

there each row and column gives you total probability of this. Now what you want to do?

This is the probability applied, X1 X2 will tell you where will X1 go where will X2 go right

with this probabilities.

Now  if  you  want  to  apply  again  and  again  right  then  you  want  to  compute  if  after  k

applications where will the system be right. That means multiplying the X1 and X2 by kth

power of it right and eventually you want to know whether a system will stabilize somewhere

or not, so you want to compute higher powers of the matrix, probability matrix that comes

there, so these are applications in many stochastic modeling and such things.

So will not go into that but idea is that once it is diagonalizable, powers are easy to compute,

so that is the advantage.
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And you will see in your course in differential equations, you may have to compute what is

called the e to the power of matrix, exponential of a matrix. You know given a number you

can compute e to the power x right but how do you define what is e raised to power a matrix

A. So if it is diagonalizable, e raised to power xD is very easy to compute right. So e raised to

power xA you can define if it is diagonalizable P e raised to power the diagonal matrix okay.

And e raised to power diagonal is very easy to compute. If the entry are lambda 1, lambda 2,

lambda n then e raised to power D is just diagonal entries raised to power that e raised to

power that right. It happens actually not only for exponential for any function, any function

of D you correspondingly look at f of lambda 1 and f of this. So diagnozability has a lot of

applications in computing functions right.

When the domain of a function is a matrix exponential is 1 which most probably will come

across  when  you  look  at  systems  of  differential  equations  and  finding  solutions,  so

eigenvalues and everything will come back there. So there is one advantage of diagnozability

that you can compute powers and the functions of.


