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Okay so let us begin with today’s lecture. We will start recalling what we had done last time.

We looked at what is called the Orthonormal basis of a vector space.

(Refer Slide Time: 00:41)

And then we looked at orthonormal basis was defined as a basis such that it is a non-zero

vector  such that  mutually  orthogonal  and form a basis.  So orthonormal  basis  is  a  set  of

vectors which is a basis and any 2 are mutually orthogonal. And then we prove the result that

if  a  set  of  vector  is  orthogonal  and  of  course  none  of  them  is  0  then  that  is  linearly

independent.

The advantage of orthonormal basis was that given any vector X in the vector space you can

immediately  write  down those  scalars  alpha  1,  alpha  2,  alpha  n  such that  X is  a  linear

combination of bases elements. So those scalars come out to be the dot product of the inner

product of x with u1, x with u2 and so on. So coordinate of a vector are immediately known

once you have orthonormal basis. So that was the advantage.
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And then we saw the process of constructing orthonormal basis. So given set v1, v2, vk if his

basis well and good even if not if it is a spanning set that is good enough we can construct a

set of vectors which is orthonormal and will give the same span as that of v1, v2 and vk. So

the first step is if there are any zero vectors in this drop them because anyway they are not

going to contribute anything in spanning.

And next we define by inductively w1 to be v1 and define w2 to be the next vector v2- the

projection of v2 on w1. So that projection is removed so that the difference is orthogonal to

w1 so that is a next stage v2. At every stage we go on removing the projection on to the

previous ones which I have defined. So having defined w1, w2, wj-1 and if there are any zero

we drop them. So assuming that none of them is zero once we have reached the stage.

Then look at the next vector which is vj from the given set and look at this projections of vj

on  each  one  of  the  previous  ones  all  this  are  removed  will  get  a  vector  wj  which  is

perpendicular which is orthogonal to all previous ones. So continue this process still we have

finished all the vectors v1, v2 vk. Once we have finished we will get a set of vectors some

w1, w2, wj which will be orthogonal right.

None of them will be zero and which will span the same space at that of this. Once we have

got  on  that  you  normalize  them  to  form  a  orthonormal  basis.  So  that  is  a  process  of

constructing a orthonormal basis from a given point and we have looked at examples of that.

So we will continue with the further ideas.
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We also  proved  what  is  called  Bessel’s  Inequality  which  said  that  if  you  are  given  a

orthonormal set not necessarily a basis then the coefficient v ul square (()) (04:27) is always <

or = norm of u square and equality holds there if and only if this form a orthonormal basis. So

that is what is called Parseval’s identity. So Bessel’s Inequality becomes equality if and only

if the given set of orthonormal vectors is a basis also.
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Now let us look at if we recall  we looked at linear transformations as the map from one

vector space to another R2 to R2 or R2 to other things such that they preserve co linearity

they takes lines-to-lines.  Now on a vector space we also have a notion of inner products

because there all vectors spaces are subsets of some Rn. So there is a notion of dot products

so  we  would  like  to  specialize  those  linear  transformations  which  not  only  preserve  co

linearity also preserve angles they do not change the angles.



So such things  are  called  Isometry. So  a  linear  transformation  from v  to  v  is  called  an

Isometry if the inner product Tv and Tw is same as the inner product of the original. So it

preserves the inner product and we have seen that inner product is relative to the notion of

angle and distance. So it is not surprising that we have a theorem namely T is an Isometry if

and only if it preserves the length also. So here we said it preserves the inner product so inner

product is related basically to angles.

So it says T is an Isometry if and only if it preserves the notion of distance also the magnitude

of vector is kept intact. So an Isometry takes lines-to-lines right preserve angles as well as

preserves the magnitudes so they are sort of the perfect transformation in the planes. Example

when you physically do something physically you move an object the shape of the object

does not change right.

That means all the straight lines remains straight lines angles remain same right and distance

remain same. So those are basically called the rigid motion of (()) (07:03). So this is coming

from that translation is not a linear transformation, but still it is a rigid motion okay. So this is

how they arise algebraically Isometry or is a map from the vector space v to v such that it

preserves of course the angle that is given.

And we are saying that it is equivalent to saying that it preserves also the magnitude and this

is not very difficult to show basically how is the magnitude related to the inner product that is

square root of the v dot v right that is a magnitude. So using that one can easily prove.
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So let us say first T is an Isometry that means it preserves inner product then look at the norm

of Tu square by definition it is Tu, Tu inner product, but T preserves inner product so that is

same as u, u inner product of u, u. So if T is an Isometry if it preserves inner product then it

also preserves this should be square here u, u that should be Tu square so it preserves the

distance magnitude also.

So  that  is  one  way  conversely  let  us  suppose  T  has  the  property  that  it  preserves  the

magnitudes. We want to show it also preserves the angles it also preserves inner product. So

for that let us look at T of u + take any 2 vectors u and w look at the sum and look at the

image of Tu+ w and it is inner product with itself. Now we will T is linear so this will be Tu +

Tw this also will be Tu + Tw use the property of the dot product with linear in both expand

we will get these 4 terms right.

So 2 of them are common so it gives you u, u inner product + 2 times Tu, Tw and ww inner

product, but T is an Isometry right. Since okay now T is an Isometry one should actually, but

what is this = Tu, Tw right so that is= expand that. So from these 2 what you get see norm is

preserved right so what you get. So from 1 and 2 this is see what we are assuming is Tv

preserves the notion of distance right.

So norm of Tv square is same as so this is what is a norm of Tv square right so that =this so

this is norm of u square this is norm of w square. So once you expand that you will get Tu

this is anyways it is simple I think let me I think there is some mistake in this proof what I

have written, try to prove it yourself okay because I think there is some what we have given



is suppose this is true okay.

Then what do we want to prove that Tu, Tv right this is= this is what we want to prove right

for any given. So if I take this then this is 4 terms that is okay, but this is norm of u square

and this is norm of w square. So this is norm of so this side gives you norm of Tu T of u+ w

square= norm of u square + norm of Tu Tv, Tu and norm of (()) (11:13) so what do we get. So

let us just see if we look at T of u+ w, T of u+ w.

So that comes out to be= uu + 2 times Tu, Tw + ww right.
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So what we are given is that norm of Tv= norm of v for every v so that is given to that. So

what is this, this is norm of u square + 2 Tu, Tw+ norm of w square. And what is this, this is

norm of Tu+ right this one is T of w same vector with itself so that is norm square right. So

this is= this, this is= this. So what is this= by this given property that is norm of u+ w square

right again by the given property.

So what is that= I can write as u+ w right is it okay norm square. So what is that= that is uu+

one will give you u, wu and other will be that is 2 times uw+ ww right 4 terms. Now this is

same as this so what happens this cancels with this, this cancels with this, this 2 cancels right.

So what you get is Tu, Tw= uw right. So that is what we wanted to prove is it  clear. So

assuming that the magnitude is preserved we just look at dot product of T of u+w. u+w T of

that right and expand and you get the required thing okay.



So that is what is it clear to prove now. See the first step okay so that I have just not written

the earlier thing that was= Tu Tw right. So when you expand this will be Tu, Tu+ 2 times this

thing right + Tww right T of w Tw, but that this is= this okay and that Tww= this by the given

norm of that that is basically norm of Tw square so that is= same as this okay. On the other

hand, if you expand use that property given property and expand you get these 2 equations

and that gives you this is= this.

Expanding 2 different ways that is all nothing more than that okay. So that shows that if T is

an  Isometry  that  we preserve inner  products  then it  also preserves  the  magnitude  of  the

vectors okay. 
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So let us look at some examples which are quite obvious which we normally use actually in

rigid motion what is called. So consider the map from R to R, R is the vector space over itself

right additions, scalar, multiplications. So look at alpha times that is a magnification in R. So

the claim is this is a linear map obviously right if T of x+y is alpha times x+ y so T is a linear

map okay. Claim is that it is a we are going to find out for what alpha it is an Isometry.

So if it is an Isometry what should happen norm of Tx must be= norm of x, but what is Tx

that is alpha x so you get a mod alpha times right absolute value of x must be= absolute value

of x so that we want for all x right. So that will happen if and only if mod alpha =1. So the

simple example at scalar multiplication by alpha is Isometry if and only mod alpha is it has to

preserve distance right so it cannot be anything else.



Let us look at another one in plane R2 to R2 so T of xy is x cos theta+ y sin theta- x sin theta

+  do  you  recognize  this  we  had  looked  at  this  example  when  we  looked  at  matrix

multiplication as a linear transformation right. It is matrix multiplication by a matrix. What is

that matrix cos theta sin theta right- sin theta cos theta. So if I look at where theta is fixed we

want to check whether it is an Isometry or not.

So let  us look at  T of xy= this  thing right.  So let  us compute  what  is  the norm of  this

magnitude of this vector. So what is the magnitude of this vector x cos theta+ y sin theta

square + -x sin theta+ y cos theta whole thing square that is a norm square.
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So let us compute that and simplify. The usual properties of sin theta cos theta gives you that

norm of Tx square= norm of x square that means T is an Isometry. So that condition that

preserving inner product= preserving distance or magnitude you can use either of them to

prove something in Isometry or not. So here computing the distance is easy norm is easy so

we use that property and that as I said was a rotation right.

So rotation does not change the magnitude of something right. So as expected so that is an

Isometry. So rotation in R2, R3 also is actually is Isometry right. What about translations or

not linear so we cannot call them Isometry, but they are called rigid motions. What about

reflection in R2. We take a line and reflect as if that is a mirror every point is reflecting not

necessarily x axis or y axis but any line.

So physically it should not change right angle or distance right so you can try that. What



should be called as a reflection, how do you define a reflection in R2 to R2 what should be

the formula for that right, what would be the formula for reflection against a line. It will

depend on what is that line the line is at angle theta. So the formula will come out in terms of

theta again okay. So see in R2 xy goes to its reflection against a line of slope theta angle

theta.

What should be the coordinate of the image point? You can take it as a good exercise and

then show that it is an Isometry okay. Physically it looks okay it should be it does not change

angle, it does not change distance magnitudes right so try that.
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So here is a once we have said that we have got a inner product space means what is a inner

product space vector space on which inner product is there so all subspace of Rn once we

take the inner product also it minds that becomes a inner product space right. So T is linear

and B is an ordered orthonormal basis.  Earlier  we looked at  ordered basis  and looked at

matrix of that right.

Now there is angle also available you can have a basis which is orthonormal. So T is a linear

transformation from V to V and we have fixed an ordered orthonormal basis on V not only a

basis that also is orthonormal any 2 vectors are perpendicular to each other and norm is 1. Let

us compute the matrix of that and the important thing is if T is an Isometry right if and only if

the column vector of that matrix of T forms a orthonormal set.

So given any linear transformation given an ordered basis you will get a matrix so you will



get  the  column vectors  right.  Here  if  the  starting  basis  is  orthonormal  right  and if  T is

Isometry  one  can  show  that  the  column  vectors  are  actually  orthonormal.  They  are

perpendicular to each other and norm=1 so that is a special property of linear transformation

when you get their matrix with respect to ordered orthonormal basis right. So we would not

write the proof of that, but it is a very nice property.

And another one is the row vector also form y only right column vector or row vectors also

form okay an orthonormal. So it says that if T is a linear transformation from one vector

space to another you take a ordered orthonormal basis of V look at the matrix corresponding

to  that  then  T  is  an  Isometry  if  and  only  if  the  column  vector  are  orthonormal  and

equivalently row vectors are also orthonormal right.

So let us observe we will assume this theorem, but let us seek what are the consequences. So

let us write the matrix say its column this is some extra thing has come. A being column

vectors are C1, C2 oh C1 should have been here actually okay typo. So let us A is a matrix

whose column vectors are C1, C2, Cn right and matrix can be written as the column only.

Then what is A transpose A?

Column transpose will  give you the proof right.  So what  is  this?  This  is  just  C, Cij,  Ci

transpose, Cj column multiplied by the row multiplied by column right multiplication. So that

means A transpose A is just Ci, Cj inner product. Remember what was the inner product in

terms of vector rotation A dot B inner product was A transpose right B as if you multiply as

vectors right multiplications as vectors.

So here if you multiply so that is a dot product and if these are orthogonal what will happen

(()) (23:47) 0 or 1 depending on i=j or not. So that says that if T is an Isometry right and if

you write its matrix with respect to ordered orthonormal basis then it has a property that A

transpose A= 0 if I is not= that means what it is identity matrix. What is this matrix then if

these are orthogonal it is 0 when I is not= j n=1 if i=j that is identity matrix right.

So for an Isometry its matrix representation with respect to ordered orthonormal basis has the

property that A transpose A=identity right. So let us give that as a name matrices which have

that property A transpose A is identity let us call them a name. We say that a matrix is called

orthogonal if the column vectors form A right from a orthonormal set in (()) (24:59) that is



same as saying A transpose A= identity right.

So matrices which have that property square matrices which has the property A transpose A is

identity  we  will  call  them  as  orthogonal  matrices.  So  the  matrix  of  an  Isometry  is  a

orthogonal matrix right. So you can write it as this theorem that T is an Isometry if and only it

is matrices is a orthogonal matrix right. But saying the row vectors that is same as saying not

only A transpose A is identity A transpose also is identity right both are same.
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So this is an equivalent way of saying that a matrix A is orthogonal if and only if this is a

definition right, but you can take the transpose of this what is a transpose of this it will be

precisely A transpose, transpose right that is precise with this.  So saying that a matrix  is

orthogonal is equivalent as A transpose A=identity or AA transpose that is same as saying A

transpose is the inverse. 

The transpose of the matrix is itself is an inverse of the matrix. So if a matrix is orthogonal it

is invertible as a consequence obviously right and it inverse is the transpose. So they become

very nice to compute the inverse you do not have to go to determinant or adjoin or anything

row echelon form nothing just take the transpose you get the inverse of the matrix we have a

very special matrices right.

And they arise as matrix representation of Isometry right which preserves conversion of angle

and  distance.  So  that  is  what  we  are  saying  that  orthonormal  matrices  arise  in  matrix

representation of Isometry with respect to orthonormal basis right.


