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Lecture - 16
Row Space, Column Space, Rank-Nullity Theorem - I

Okay so welcome to this today’s lecture. We will start recalling what we have done earlier.
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So we defined the notion of a basis of a vector space V in Rn and proved the following facts

about the basis. B is a linearly independent set and generates V. That means every vector in V

is a linear combination of elements of B and it is a linearly independent set or equivalently B

is a maximal linearly independent set. So you can replace this condition that it spans by the

maximal property.

And it is equivalent to saying it is a linearly independent set such that LB of that, that is same

as the earlier one or it is a minimal set of generators that is another property that we proved

last time. We also said will assume this theorem that any two basis of a vector space have the

same number of elements. So that gave rise to the definition of dimension of a vector space.

So dimension is a number of elements in any basis of a vector space.

There can be different basis for the number of elements and each base will be same for a

given vector space, so that we called as the dimension.
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Some useful properties of independent and dependent sets. If a set is linearly independent, if

a  set  S is  linearly  dependent  and S is  a subset  of T, then the bigger  set  also is  linearly

dependent.  What  does  independent  mean?  Here  that  is  where  the  linear  combination  of

elements of S which is 0 but not all coefficients are 0 but elements of S are also elements of

T, so that means there is a linear combination of elements of T which is 0 but one of the

coefficient is not 0.

So T is also dependent, so if inside a given set you find a subset which is linearly dependent,

then the bigger set itself is linearly dependent and equivalent way of saying the same thing

would be if T is linearly independent the bigger set is linearly independent, then every subset

also  is  linearly  independent  because  the  property  of  independence  is  that  if  a  linear

combination is 0, all the scalars must be 0 right.

If it is true for elements of T, then obviously it is true for elements of the subset also. Another

way of  saying the  linear  dependence  is  a  set  is  linearly  dependent  if  and only  that  is  a

definition  actually  of linear  dependence  but you can also write  one element  at  least  one

element of S is a linear combination of elements of the remaining one and this is another

property that we proved namely you have got m vectors in Rn right.

You have got  m vectors  in  Rn and the  number  of  vectors  is  bigger  than  the number of

components then that is always linearly dependent. So we observed that okay. So in R2, we

have got 3 elements,  3 vectors,  they have to be linearly dependent  right,  they cannot be

independent, so that property we saw.
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Let us look at some vector spaces associated with the matrix. So let us take a matrix A and

these are the row vectors R1 R2 and Rm, there are m rows and each row is a right vector of

length n okay, so this is the m rows and n columns. Each row vector has got n components

right, so this is m x n matrix. So these vectors R1 R2 Rm if you put them together in a set and

generate a vector space, so that means a linear span of the row vectors R1 R2 and Rm is

called the row space of the matrix A.

So given a matrix, look at the row vectors right, so look at the row vectors there are m of

them, so the subspace of Rn each vector is of length components n. So if you generate a

subspace that will be subspace of Rn. So row vectors generate a subspace that is called the

row space of, so that vector space has got a dimension right. So that dimension is called the

row-rank of the matrix A that is called the row-rank of the matrix A.

So what is a row-rank? Now we are defining a new term, earlier we had the notion of rank.

So what was the rank? In the row echelon form, the number of nonzero rows right that was,

now we are defining something new but will show it is actually equivalent to what the earlier

definition is that in terms of vector spaces look at the row space that is the space span by the

row vectors, look at its dimension and that dimension is called the row-rank of the matrix.

(Refer Slide Time: 06:03)



And similarly we will have for the columns, we shall take the matrix and write the column

vectors C1, C2, Cn, so these are the column vectors right. There are n of them, m x n matrix,

so there are how many columns are there, n of them, each column has got m entries right. So

this is you can write a matrix in the column form, so this we call the column form of a matrix,

matrix with only columns are written down.

So this is a column vectors, so look at the space span by the column vectors, each column

vector is a vector in Rm right, m components are there, so you will get a subspace of or you

get a vector space which is inside Rm, so that is called the column space. So column space is

a vector space in Rm and the row space is the vector space in Rn okay. So these are the two

subspaces and they play some important role. We will see what are the roles they play.

But just one observation here, once you have written in the column form a matrix, if you take

a linear combination of that=0, these are column vectors right of a matrix A. If I take some

linear combination and say it is 0, then that automatically implies that the A applied to the

vector alpha 1, alpha 2 and alpha n is 0 right. This equation linear combination can be written

as this right and that means what?

That means that the vector alpha 1 alpha 2 alpha n is a solution of a homogenous system

right. A applied to alpha 1 is 0, so that means this vector will form to alpha n belongs to the

null space of A. Remember what we define a null space, all vectors say that Ax is=0, so a

linear combination of columns=0 gives you an element  in the null space,  the observation

which we will use it later on.



(Refer Slide Time: 08:09)

So here is the first theorem about the row-rank. Supposing A is a given matrix and you apply

row of ratios to it, it will change to something, rows will change. Now what the elementary

row operations were? One was interchange of two rows, other one was adding one row to

another or multiplying a row by a nonzero scalar right. Now if you take a linear combination

of the rows and transform them by elementary row operations what you will get?

We will  get some new rows but they are linear  combination of the earlier  ones anyway.

Probably, if R1 and R2 are interchanged you will not change any linear combinations right. If

you have taken R1+R2, we will get a new row right but in the new row it is R1 applies R2

which is obtained from R1 and R2 itself by linear operation right. So what we are saying is

the row space of a matrix does not change if you apply elementary row operations to the

matrix.

You have got a matrix A with rows R1 R2 right, rows last wise Rm or if you apply row

operations to this matrix, the rows will change right, R1 tilde R2 tilde and so on but the row

space of the transform matrix is same as the row space of the earlier one, row space does not

change, rows are changed because each row in the transform matrix is a linear combination of

the earlier rows.

So it is not going to change in the vector space property right, in a vector space if you take

two elements and take linear combinations that stays again in the vector space. So the basic

fact is the row operations changes the rows, transform the rows but it does not change the row



space of the matrix. So that is what once the row space does not change dimension will not

change, so row rank of A is same as row rank of B if B is obtained from A by elementary row

operations right.

These are just written there in the proof okay. So as a corollary of this you are given a matrix

A and you have brought it to row echelon form. So what is a rank of the row echelon form?

Rank of the echelon form that is the nonzero rows we defined earlier and what will be a row-

rank of the row echelon form that is same as the row-rank of the matrix A. Let us try to

observe that if you take the nonzero rows of the row echelon form, then that is a linearly

independent set.

The nonzero rows in the row echelon form is a linearly independent set right, is very easy to

write the proof but will just skip the proof, will look at examples and see how it works okay.

So this is a fact that if you take a matrix A take it row echelon form then you get nonzero

rows right. The row space of the two is same, row space of A is same as the row space of the

row echelon form.

And in the row echelon form the nonzero rows, the vectors they are linearly independent.

They are all  linearly  independent  and bottom rows are 0,  bottom rows are 0 in  the row

echelon form, only nonzero rows stop and we are saying they are linearly independent. So

what will be the dimension of, so these nonzero rows will form a basis for the row space of

row echelon form because they are linearly independent.

These are the only rows which are available which are independent, so what is the row-rank

of the reduced row-rank of the row echelon form? That is the number of nonzero rows right

and that is what we have defined as the rank. So what we are saying that rank that we defined

as the number of nonzero rows is same as the row-rank of the matrix A is same as the row-

rank of the row echelon form of the matrix. All three are same.

So let me repeat the reason again. Under row operations, the row space does not change first

fact. That means the row-rank of A is same as the row-rank of the row echelon form. Second

fact, the nonzero rows in the row echelon form are linearly independent and how many are

there? (()) (12:53) the rank right. So they form a basis, they are linearly independent and form

a basis, so that is a dimension.



So R and rank of the matrix is also the dimension of the row space. So rank is=row-rank

is=row-rank of A tilde that is the row echelon form, all three are same quantities right. There

are different ways of looking at it but you just see look at the number of nonzero rows or look

them as a basis for the row space of the matrix A okay. So this is one observation.

(Refer Slide Time: 13:30)

Similarly, if you look at the column space, we want to claim that the column space of a

matrix A is same as the column space of the row echelon form of the matrix. If you perform

that means how do you get the row echelon form? By applying row operations right and in

terms of matrix multiplication what is a row operation? Premultiplying it by an elementary

matrix and those are all invertible matrices right, we observed that.

So we will use that fact now. So if B is obtained from A by a row operation then B must be

equal to E times A right. Now look at the kth column of the both sides, the kth column of B is

precisely the kth column of A premultiplied by E, that is the block matrix multiplication right.

So if that is the case okay, so what will happen? If the kth column of B is premultiplied by

this okay then what we wanted to say is that if there is a linear combination, column rank

does not change means what?

If there is a linear combination which is independent in A and apply row operation right,

columns will change. We want to say that whichever columns were independent after row

operations, they still remain independent. That will show that the column space of A is same

as the column space of the row echelon form. Is that observation okay for everybody? If



some elements, some columns were independent in A, I apply the row operations, columns

will change right.

But suppose I start with independent columns, I know that some columns are independent

right and I transform them by the row operations, I will get some transform columns. If I

want to show that they also still remain independent. If we start with independent, they still

remain independent, the transform (()) (15:45) independent, I want to show that.

So let us show that, so let us take a linear combination okay, c1 c2 ck, c1 of Bk1 and cr of so

I am not taking all the columns, I am taking the k1th column, k2th column and I have picked

up some r columns and I am taking a linear combination that is=0 in B okay, that is 0 in B. So

what are Bk’s? They are obtained from the corresponding column of A by premultiplication

by the elementary matrix.

So what is Bk that we saw it here, that kth column is E times Ck, so I put that value so that

means E times everything. So E is taken out right, distributive property of matrices, so this

but if this is=0 what is E? E is an invertible matrix, so fact that every elementary matrix is

invertible. So that means if E applied to a matrix is=0, then that itself should be 0 because E

is invertible, I can operate on both sides by E inverse if you like okay.

So that means see the linear combination of c1, linear combination of these column vectors of

A is=0  right.  So  what  is  if  a  linear  combination  of  column  vectors  in  B  is  0  then  the

corresponding linear combination in A is also 0 and if they were linearly independent if these

were independent in A then what will that imply? That is all the scalars c1, c2, cr must be 0,

so what you are shown is if c1Bk1+crBkr is 0 then all are 0 provided the original ones were

linearly independent right.

So these are proved by saying that if you start with some collection of linearly independent

columns  of  A  and  transform  them  by  elementary  row  operations,  the  transformed

corresponding columns are still linearly independent. They still remain linearly independent

right. So what does that mean? That means the column space of A is same as the column

space of the transform matrix right, independence is not going to change right.



So that precisely says there is a column space of A is same as column space of B if it is

obtained from A by elementary row operation. So if the space is same, dimension remains the

same as for the row space we saw, so dimensions are same. So as a corollary right if B is the

row echelon form, so we take a matrix A, bring it to row echelon form, then the column space

of A is same as column space of the row echelon form and as the dimensions are same right,

they do not change.
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Here is a theorem which is based on these things only, what we have just now discussed. So it

says if A is m x n matrix right, the row vectors of the matrix A tilde that is the row echelon

form, they form a basis that is what we said earlier right. If we take a matrix A, bring it to row

echelon form, then the nonzero rows form a basis right that we said with the rank is=the row

rank okay.

So they form a basis and similarly if I look at the pivotal columns of A, so what are the

pivotal columns of A, you take the matrix A, bring it to row echelon form, you see where the

pivots are coming right. So knock down p1 the first pivotal column, p2 the second pivotal

column, so look at the original columns right of the matrix, p1th column, p2th column and

prth column, then they are also because independence is not going to change right.

So they are independent and span the column space, so that is second observation okay. They

form a basis of the column space of A. So I am trying to tell you how to get a basis of the row

space, how to get a basis of a column space. How do you get the basis of the row space? Take



the matrix; bring it to row echelon form, the first the nonzero rows, top nonzero rows will

give you the basis for the row space right.

The second one the column space, take the matrix, bring it to again row echelon form, look at

the pivotal columns now, look at the pivotal columns of A original matrix. Then, they are

going to give you the basis for the column space right and the third the rank is same as the

rank of the column that you already observed and the rank of the matrix is same as the rank

of the column, space is same as the rank of the row space.

One introduces that null space remember, Ax=0 right all vectors x so that is called the null

space. So dimension of the null space is called the nullity of the matrix A. So that is the

dimension of the null space okay and there is a theorem which says that given m x n matrix,

if you add up the rank of the matrix with the nullity either sum of these two that is=n the

number of columns of A, these two always add up and give you number of columns.

Again proof is easy but some technical writing is involved, so we will not do that. We will

use  this  result  and  verify  in  examples  right.  So  what  you  have  said?  Till  now  let  me

summarize before I start looking at examples. Given a matrix A right there are 3 important

subspaces associated with A, one is a row space that is the space span by the row vectors of

the matrix.

There is a column space span by the column vectors of the matrix right and what we are

saying is the dimension of the row space is same as the dimension of the column space is

same as the rank that we defined earlier, the number of nonzero rows in the row echelon form

of  a  matrix  right.  So  these  are  3  important  subspaces.  How do  you get  their  basis  and

dimension?

So second step, the basis of the row space is vector space span by the rows. The basis is the

nonzero rows in the row echelon form; they give you the basis okay and then once you have

found the basis you have found the dimension also the number of that. For the column space,

again look at the row echelon form look at the pivotal columns, note down at what places the

pivots are occurring.



The corresponding columns of A you pick up, they give you the basis of the column space. So

what will be the dimension of the column space? Number of pivots and that is same as equal

to the rank anyway, so column rank is same as the row rank okay but we also get a basis by

picking up the corresponding column vectors right, so these are the ways of getting the basis

for them okay.


