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And the second fact between Lebesgue measure and Lebesgue measure and Lebesgue

measurable  sets  and  the  Borel  measurable  sets  is  the  following.  Every  Lebesgue

measurable set E can be represented as A union of 2 sets - one A Borel sets A and a null

sets N and the Lebesgue measure of E is same as the Lebesgue measure of the set A N is

the set of measure 0.

So, that is the second fact one has.
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So, let us take, so let A B A Lebesgue measurable. Let us take Lebesgue measurable set

in R 2 then the set A can be return as E union N where E is a Borel set, in R 2 and the

Lebesgue measure. So, lambda R 2 of A, A is same as lambda R 2 of E.

Now, if we look at T of A. So, if you look at the set T of A then that will be equal to T of

E union T of T of N. If T is say non singular and now this is Borel set and this is again a

null set. So, Lebesgue outer measure of T of A is equal to Lebesgue outer measure of T

of E which is equal to determinant of because this is a Borel set. So, determinant of T

times Lebesgue outer measure. Lebesgue measure of the set E and which is same as the

Lebesgue measure of the set A.

So, this is same as Lebesgue measure of T times Lebesgue measure of A. So, we have

used the fact that if A is a Lebesgue measurable set then A can be written as E union N

where E a Borel set and N is a null set; that means, the Lebesgue measure of R 2 of the

set A is same as the Borel Lebesgue measure of the Borel component of it that is R 2 of

E. So, now, if I apply transformation T to it and say T is non singular, then T of A will be

equal to T of E union, T of N. And just now observed that T of N is a null set and T of E

is a Borel set.

So, Lebesgue measure of T of a will be nothing, but the Lebesgue measure of T of E

which by the earlier case is determinate of T times Lebesgue measure of E and Lebesgue

measure of E is same as the Lebesgue measure of A. So, that proves that for A Lebesgue



measurable  set  the  Lebesgue  measure  of  the  transforms  set  T  of  A ,  A same  as

determinate of T times the Lebesgue measure of the set A itself.
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So, the proves the theorem completely namely, so that proves the theorem completely

namely that if A, A, if E is any Lebesgue measurable set then T of E is also Lebesgue

measurable and the Lebesgue measure of T of E is equal to determinate of T times the

Lebesgue measure of E. So, this is how the Lebesgue measure of a set E in the plain

changes with respect to linear transformation will give some application of this. Now,

because there are many nice linear transformations in the plain.

So, let us look at the first application of this namely.
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So, let us take a 2 vector a and b a 1 1 and a 2 b 2 in R 2 and look at the set which are all

sets set P of all vector in the plain of the type, where the first component is alpha 1 a 1

plus alpha 2 a 2 and the second component is alpha 1 a 1 plus alpha 2 b 2 where alpha 1

and alpha 2 are numbers between 0 and 1.

This is called the parallelogram determinate by the vectors a 1 b 1 and a 2 b 2 in the

picture it is the following.
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So, if we have the plain let us take 2 vectors 1 vector is this vector and other vector is

this. So, this is the vector which is a 1 b b 1 and this is the vector which is a 2 b 2, then

they  determine  a  parallelogram  the  geometric  object.  So,  let  us  see  what  is  the

parallelogram? So, that is nothing, but this parallelogram.

So, that is a parallelogram P determinant by these 2 vectors a 1 b 1 and a 2 b 2 and any

vector in between. So, this is vector. So, this is parallelogram P is characterized by that,

this any vector inside here. So, call it as X y. So, P is then X looks like alpha 1 a 1 plus

alpha 2 a 2 and second looking looks like alpha 1 b 1 plus alpha 2 b 2, where this alpha 1

alpha 2 has a property. They are numbers between 0 and 1.

So, alpha 1 alpha 2 between 0 and 1. So, this is the point with component alpha 1 and

alpha 2. So, if I take. So, this is how, this is what the parallelogram. So, one can check

geometric fact that if I take 2 vectors a and b 1 and look at the geometric picture of this

parallelogram, then if I take any alpha 1 alpha 2 between 0 and 1 and look at this, then

this is nothing, but the parallelogram given by these 2 vectors. The claim we want to is

that,  we  want  to  show  that  the  Lebesgue  measure  of  parallelogram  is  same  as  the

absolute value of a 1 b 1 a 1 b 2 minus a 2 b 1. Say these are the components a 1 b 1 and

a 2 b 2 are the components of the vectors which we started with.

So, the claim is the Lebesgue measure of P is equal to the absolute value of a 1 b 2 minus

a 2 b 1. So, to prove this we are going to show that this P is equal to T of a set E. We are

T is linear transformation T linear and E is a nice set and it is not difficult to guess what

is T and what is E. So, let us just look at that. So, the claim, so let us observe that; if T is

the matrix with the component a 1 a 2 b 1 b 2.
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So, those are the vector, which are given vector are a 1 b 1 and a 2 b 2. So, the first

column is the vector a 1 b 1. Second column is the vector components of the vector a 2 b

2. If I look at this transformation T and look at the set E with components alpha 1 alpha 2

in where alpha 1 alpha 2 are real line and there are between 0 1 on. So, what is this set E.

This set E is nothing, but the set E is nothing, but a rectangle actually square in the plain

with sides 0 1 to 0 1.

And if I look at T of E. So, any set alpha 1 alpha 2. So, what will be this? So, what we

are saying is a following that if I look at the set E. 
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So, here is the set E which looks like. So, this is the set E 0 0. This is 1 0 1 1 and 0 1. So,

if I look at this set and look at the transformation given by T, where T is equal to a 1 b 1 a

1 b 1 and a 2 b 2 if I look at this, then the image of this, under this is precisely that a

parallelogram P where this is a 1 and a 2 and this is a 1 b 1 and this is a 2 b 2.

So, this transforms to this parallelogram. So, if T is this and E is this set. Then T of E is

equal to P that is because what is so, let us look at a 1 a 2 b 1 b 2 and a vector is alpha 1

alpha 2. So, what is that? So, that is a 1 alpha 1 plus a 2 alpha 2 and that is gives b 1

alpha 1 plus b 2 alpha 2. So, that says the vector here alpha 1 alpha 2 goes to the vector

there given by this and that is precisely the parallelogram.

So, under the and this is the linear transformation.  So, under linear transformation T

given by this matrix by unit square changes to the parallelogram and once that is true.

So, this will imply that the Lebesgue measure. So, this will imply the Lebesgue measure

of P is same as the Lebesgue measure of in the plain of T of E and that is equal to

determinant of T absolute value times Lebesgue measure of E, but Lebesgue measure of

E that is a area there is a rectangle. So, it is a area that is equal to 1 and determinant of T

is a 1 b 2 minus a 2 b 1.

So, that gives us the result. So, that gives us the result that the Lebesgue measure of P is

same as the Lebesgue measure of the transform set T of E which is equal to determinant

of T times the Lebesgue measure of E and that Lebesgue measure of E being equal to 1



that gives us determinate of T which is nothing, but a 1 b 2 minus a 2 b 1. So, this gives

us that Lebesgue measure of the parallelogram is the determinant of the given by the

vector. So, that is a 1 b 2 minus a 2 b 1.

So, these are, this is one of the result that one proves normally in geometric and linear

algebra  that  determinant  is  nothing,  but  a  measure  of  the  parallelogram area  of  the

parallelogram determinant  by  the  vectors.  Let  us  look at  another  application  of  this

formula how the linear transformation changes.
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So, let us look at the Lebesgue measure of the unit circle area reason enclose by the unit

circle. So, Lebesgue measure of all vectors x, Y in R 2 such that X square plus Y square

is less than 1.

So, let  us look at  that. So, let  us call  the Lebesgue measure of this to be equal to a

number pi and we are not assuming anything about pi, where as saying that the Lebesgue

measure of this unit circle is a finite quantity. So, let us see, it is finite.
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So, here is the unit, it is a bounded. So, this is X square plus Y square less than 1. So, that

is that set. So, this is a is a bounded set. So, for example,  this is enclose inside, this

rectangle inside, this square of, this is 1 and this is 1. So, this is 0 this is 1 and this is 1.

So, it is enclose inside this square of a length so; that means, that the area. So, this is less

than equal to it is the subset of the square.

And square is a bounded thing so; that means, the Lebesgue measure of the point. So,

that  X square plus  Y square less  than  1 will  be less  than  or  equal  to  the  Lebesgue

measure in the plain of the square of the finite quantity so; that means, that the Lebesgue

measure  of  the  region enclose  by the  unit  circle  is  the finite  number  and this  finite

number. We are just calling it by the number, by where denoting it by the symbol pi. So,

pi is the Lebesgue measure of the region enclose by the unit circle, then the claim is that

if you look at the annulus region, if you look at the annulus region that is X square plus

Y square bigger than a square and less than b square then it is Lebesgue measure is pi of

b square minus a square.

 So, what we want to prove is that if I look at.
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If I look at here is bigger circle and here is the smaller one and this radius is a in this

radius is b. So, we are saying the Lebesgue measure of this portion is nothing, but pi b

square  minus  a  square  that  is  what  now we should  be  expecting  from our  ordinary

geometric that we are been learning in school namely the area of the circle is equal to pi r

square.

So, will first prove that the area of a circle of radius r is equal to pi r square and from

there we will reduce this fact. So, let us observe that. So, the first thing is let us take the

linear transformation T, which is diagonal which is given by a 0 0 a. So, will looking at

the diagonal transformation a 0 0 a, and look at the unit circle area enclose by the unit

circle. So, that is e. So, E is the set of a all at vectors X coma Y in out. So, X square by Y

square is the less than one, then if we look at any point here, and transformate according

to this T that will look like.

So, let us look at what will that look like. So, let us look at the transformation a 0 0 a,

and let us look at a vector X Y. So, that gives the vector ax a y. So, if this vector had the

property that X square plus Y square less than one, then the transform vector ax a Y has a

property a X square plus a Y square is equal to a square times X square plus Y square,

which is less than a square. So, that shows that the unit circle.
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So, if E is the unit circle; that is XY, X square plus Y square less than one, then T of E is

the circle the region enclose by the circle X square plus Y square less than a square. So,

that  is  what  we  know. So;  that  means,  now  we  have  apply  our  theorem  of  linear

transformation. So, look at the Lebesgue measure R 2 of the transform set e. So, that is

equal  to  by the  property  of  that  the theorem;  that  is  terminate  of  T times  Lebesgue

measure of the set E. The determinant of T is equal to that is a diagonal transformation.

So, that is a square and Lebesgue measure of E, which is unit circle is pi. So, Lebesgue

measure  of  the  transform set  is  equal  to  pi  a  square.  So;  that  means,  the  Lebesgue

measure of all the point X Y such that X square plus Y square is less than a square is

nothing, but pi a square.

So, that is magnification that, where getting and. So, as a consequence of this, let us

reduce for the annulus region, the area is the required Lebesgue measure is pi of B square

minus a square. So, let for that we have to just observe that, if I look at the circle. So, the

set of points X Y X Y; such that X square plus Y square is less than b square is a set,

which is the bounded set I will Lebesgue R 2 of that is finite. So, is a set of finite outer

measure of finite Lebesgue measure. So, I can write that the Lebesgue outer measure of

X square plus Y square, bigger than a square,  and less than b square is nothing, but

Lebesgue measure of the set X square plus Y square less than b square set minus the

inner circle. So, that is X square plus Y square less than a square.
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And now, everything being finite in, can write this as the Lebesgue measure of the region

enclose by the outer circle. So, that is X square plus Y square less than b square minus

Lebesgue measure of X square plus Y square of Lebesgue measure of X square plus Y

square less than a square. So, this is possible, because everything is a finite quantity. So,

the measure of the difference a minus b measure of a minus b is measure of a minus

measure of b, whenever b is the subset of a, and everything is finite.

So, that property gives is this, and this is pi of b square. Just now we saw pi of a square.

So, that is pi of b square minas a square. So, that proves, so what we saying is, that is

simple properties help us to conform that the Lebesgue measure on the plain that we

have define is a essentially, the extending the notion of area in the plain to a bigger class

of subset, and the usual formula as for the area that you have been using a priory without

any justification are now being a justify by the Lebesgue measure. I just point out and

more excision of this result namely that the area Lebesgue measure annulus region is pi b

square minus a square to something in, in integration which is looks like the change of a

variable formula in multiple integrals; namely if you have a double integral then, and you

change to Cartesian to polar coordinate, then the dx dy. normally we have that formula

that when you change d X dy it will be r dr tta d theta.



So, more reargues we have saying that for a particular class of functions I want to state,

and given outline of the proof will not proving it fully, will given outline of the proof.

So, let us go to the next application of.
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So, this is what I just now said that the Lebesgue measure of annulus region is Lebesgue

measure of outer circle minus Lebesgue measure of the inner circle; that is pi b square

minus a square . 
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So, this is another application or extension of the result, this now proved, is called the

integration of the redial function.

. So, let us look at the theorem says, let us look at a function define from 0 infinity on the

positive, on the non negative part of the real line, taking values in nonnegative values.

So, that is 0 to infinity. So, its a non negative measurable function defined on the non

negative  part  of  the real  line,  then the claim is  that  if  I  look at  the  double integral,

integral of R 2 of F absolute value of x, X is the vector. So, absolute values the norm, the

magnitude of the vector x. So, look at this. So, this is like a composite function. So, the

vector X goes to the magnitude; that is a non negative real number, and F valuated at

that.

So, the double integral with respect to R 2 is given by 2 pi times fr dr d theta. So, that is

the  clime  that  this  integral  is  equal  to  this  integral.  So,  and  what  is  meaning  of

nonnegative radial function F is the nonnegative. I should have said here, it is a radial

function; that means, it depends only on the absolute value of the function a does not. So,

F is a nonnegative. So, this is a radial function. So, this we can think it as F composite.

The magnitude is the radial  function is the radial  function,  it  the value of composite

function depends only upon the magnitude of the vector, and not on the position of the

vector.

So, to prove such a result, the proof a typical application of simple function technique.

So, one tries to proof that for a simple measurable function this is true and then apply

monotone convergence theorem and so on. So, I will just outline the steps for a detail

proof, you may consult the text book. So, let us look at the first step, let us look at the

first step when this function F is the indicator function of a interval ab, when F is the

integrator function of a interval ab, where ab is a interval in the non negative part of the

real life as, so a less than b bigger than 0. So, when F is the indicator function, let us

compute this both sides, and what is the look like.

So, when F is the indicator function of the ab. So, here is the indicator function. So, this

is 0 to infinity. So, 0 to infinity means this will give you indicator, function will give you

only a to b. So, this will be a to b of the function fr in function is indicator function is

values is 1. So, X rdr. So, when you integrate rdr we get r square by 2 between a and b.



So, when you put the values, we get b square minus X square by 2. So, that is equal to pi

of b square minus a square.

So, this side is nothing, but pi of b square minus a square and what is this f. So, the

indicator function of ab evaluated at the absolute value, means you are integrating in the

annulus region between the limits a and b. So, it is pi b square minus pi a square. So,

then it is just equal to pi of b square minus a square. So, this both sides are nothing, but

the result that we did discuss, now that the area of the annulus region is equal to pi b

square minus a square. So, step one is for indicator function, it is that result.
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The next thing is will look at a sets, which are either sequence is E ns with sequences of

sets  which are Lebesgue measure of  course,  either  pair  wise disjoint  or  a  increasing

sequence.

And closing for the indicator function of each set en, this result holds, then the claim is,

it also holds for the union of E ns. So, if each E n the result holds than the result for each

indicator function of each E n. It holds, it also holds for the indicator function of set E,

and that essentially is an application of the monotone convergence theorem to the earlier

result.
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So, another step three from such saying one comes open sets by the fact that, each open

sets is a countable disjoint union of countable disjoint union of intervals. So, for intervals

that property holds. So, this holds for every open set.

And from the open sets and null sets. So, one shows the corresponding property also

holds for null sets. So, open sets and null sets; one goes to the indicator function of any

Lebesgue measure set, because any Lebesgue measure set can be return in terms of a

open sets and null sets. So, and then from this, one apply usual monotone convergence

theorem technique from the indicator function to nonnegative measurable function. So,

these are the steps one follows to prove theorem of this kind. I just want to conclude

today’s lecture by say.
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What we are done it for product space is of two product spaces, can also be extended to

any  finite  number  of  product  spaces.  So,  namely,  you are  given a  finite  number  of

measure spaces X I, A i mu i. we define the product of two of N can be extended by

instead of being one at a time iteratively, you can define the product of the space this X

spaces is xi 1 to N. you can define the product sigma algebra A i is 1 to N, and you can

also define the product measure inductively one can, so that and.

.So, this is called the product space, I will not going to the details of it, but this is useful,

and one can also show that if you take product of some finite number, m number and

take product of some N number of copy, and then take the product name; that is same as

to the product of the, then put to together. So, it is same as the product of X I from m 1 to

N plus m. So, these are same. So, one can, same I with usual identity.

So, basically saying that what we are done it for two product of two, major spaces can be

done it for a finite number of them. So, as a consequence one can define the notion of

Lebesgue measure subset in rn, and the notion of Lebesgue measure in rn. So, this can be

done. So, this again, those who are interested should refer the text book for more details.

So, what we are done today is, we have completed the study of product measure spaces,

and  with  that  we have  a  essentially  completed  what  is  called  the  basic  concepts  in

measure  theory;  namely  we have done the extension of  measure,  then integration  of

measure, then measure and integration on product spaces. This is the core of the subject,



and from now onwards I will be looking at some special topics in our subject of measure

theory.

Thank you.


