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Lecture – 31 A
Lebesgue Integral on R2

In the previous few lectures, we have been looking at the lebesgue measure on the space

R 2 and its various properties in the previous lecture. We have started analyzing how

does a lebesgue measure of a set change, when we apply a linear transformation to it. So,

we had started analyzing it. Let us recall what we have done and then will continuing

analyzing  this  problem  and  some  more  properties  of  lebesgue  measure  under  other

transformation.

(Refer Slide Time: 00:48)

So, let us just recall  what we have done last time was that we started looking at the

theorem namely if  T is a linear transformation from  R 2 to  R 2 such that and  E is a

lebesgue measurable subset, then we showed that we wanted to show that the transform

set  T of  E the image of  E and  T is again a lebesgue measurable set and the lebesgue

measure of the transform set is  obtained by multiplying the lebesgue measure of the

original set with the constant called determinant of E. So, lebesgue measure of T of E is

equal to determinant of T times lebesgue measure of the original set E.



So, this property this theorem we had started analyzing we had analyze the proof of this

theorem in the first case when T is a singular transformation and there we argued that if

T is a singular transformation then T of E the image set is going to be a lebesgue null set

and for a singular transformation  determinant  of  E T is  also equal to  0, that is how

singular transformation are characterize.  So,  in that  case both the terms the lebesgue

measure of the translated set is equal to  0 is same as determinant of  T times lebesgue

measure of the original set.
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In  the  case  when  T is  a,  on-singular  transformation  when  T is  nonsingular.  So,

nonsingular means  T is invertible and here are a few facts about linear algebra saying

that  T is  nonsingular  is  same  as  saying  as  determinant  is  not  equal  to  0 and  it  is

equivalent to saying that as map T is a one to one on to map and the inverse of course, is

also a linear transformation.

So, in a analyzing the proof of that we are already shown that if E is a Boral set. So, we

first visit our self to Boral subset of  R 2. We showed that if  E is a Boral set then for

every non singular linear transformation  T of  E T, the transform set  T of  E also is a

boreal  set  that  basically  follows from the effect  that every linear  transformation is  a

continuous map and if it is non singular then the universe also is a continuous map.

So, essentially saying that for every boreal set  E T of  E is boreal the  1  analyze is that

when E is open set, T of E is an open set and NZ is a boreal set and then one shows that



the collection of all sets for base. This property is true namely the image is a boreal set is

a sigma algebra including open sets and hence, one can includes that for every set E the

transform set the image set of  E is also a boreal set. And we also analyze that if you

consider this as a measure for all boreal sets then it is translation invariant because T is

linear  and;  that  means,  by  the  uniqueness  property  we  got  that  for  every  linear

transformation T which is non singular the lebesgue measure of the transform set namely

T of E must be a constant multiple of the original measure lambda or R 2 of E and that

constant will depend on the transformation T.

So, this is a stage we had reached and then we wanted to analyze further and the claim

we want to prove is that this C of T is nothing, but determinant of T. So, this is a stage

we are reached. So, let us continue the proof, let us observe that this map T to C of T. See

for every transformation T, we are associating a number C of T which is non negative.

So, we get a map T going to C of T.

(Refer Slide Time: 04:55)

So, there is a map for every nonsingular transformation T. We are associating number C

of  T. This association, this map as the following properties namely if  T is a diagonal

transformation, then  we observed that  is, that  was  beginning of  our  analysis  of  this

theorem that C of T is nothing, but the determinant of T.

So, for diagonal transformation C of T is equal to determinant of T, determinant and the

second property is that if the linear transformation is orthogonal transformation then this



C of  O is equal to  1 is equal to determinant of  T and this is because of the fact that a

orthogonal transformation on R 2 leaves the set namely the units circle you can think of

it has all x in R 2 says that norm of x is less than equal to 1 invariant.

So, let us just look at the property is straightly more some of you may not be knowing

about linear transformations.
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So, T is a linear transformation from R 2 to R 2 and let us as every linear transformation

is given by a matrix A. So, it is A 2 by 2 matrix sort is a b c and d. So, saying that T is

orthogonal is same as saying that if it look A and look at A transpose that is same as A

transpose A and that is equal to identify.

So, saying that  T is orthogonal is characterized by this property about the matrices is

matrix of the linear transformation namely A times A transpose is same as A transpose

times A and that is equal to identity and which is also equivalent to the property that if

you look at the row vectors and the column vectors. So, the row vector is ab and cd. So,

these 2 vectors are orthogonal are orthogonal namely the dot product is equal to  0 and

each is a unit vector. So, that is call orthogonal, but we are not you can to uses property.

So, let us look at this property which says A, A transpose is equal to A transpose.

So, this property gives us the following fact namely, let us look at the dot product. So, let

us take any vector x belonging to R 2 and look at the dot product of. So, let us look at the



image the image is T of x. So, x goes T of x. So, let us look at the dot product. So, norm

of T x square, that is given by the dot product of T x with itself. So, that is the definition

of the magnitude the dot product in  R 2. But this dot product can also be written as  T

times. This  T can be written as  T transpose  T of x.  So,  T transpose is  a  same as a

transpose basically. So, you can think it as matrices and that being identity. So, this is

same as x, x.

So, orthogonal transformations are also characterize by the property that the norm of the

image  of  any  vector  is  equal  to  norm of  the  original  vector  that  is  another  way of

characterizing  a  orthogonal  transformation  we  can  take  that  as  a  definition  of  the

transformation if you like.

Now from both this properties that A transpose A is equal to identity. So, that implies the

following fact that A transpose A equal to identity this implies that the determinant of A

transpose determinant of A is equal to 1 and that implies determinant of A transpose is

same as determinant of A. So, that say determinant of a determinant, A times determinant

of A. So, this square is equal to 1. So, that implies that the absolute value of determinant

of A is equal to 1.
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So, for A, so T orthogonal implies that determinant of T absolute value is equal to 1, so

that is 1 fact. Also the fact that norm of T x is equal to norm of x implies that if norm of x

is less than or equal to 1. So, that implies norm of T x is also less than or equal to 1 so;



that means, if in the plain we look at the unit circle, but this is the set where norm of x is

less than or equal to  1 and if you take the transform set the transform set is same. So,

that. So, under T this gives back to the same thing. So, norm of T x equal to norm x less

than or equal to 1.

So, that is saying that T leaves if T is orthogonal then it leaves the unit circle the region

inside the unit circle invariant and; that means, that essentially means that the lebesgue

measure of the set is same as lebesgue measure of that set.  So, that implies that the

lebesgue measure of the transform set, so that circle, so mode x less than or equal to 1 is

same as the lebesgue measure of mode x less than or equal to 1 and this being equal to

determinant of T, this is being determinant of T times this being, this is same as that. So,

this is sorry, this is same as. So, that implies that, but this can be written as determinant

of T, because that is equal to 1 times lebesgue measure of norm x less than or equal to 1.
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So, this implies that. So, this is a constant. So, C of T which is determinant of T is equal

to. So, C of T is one which is same as determinant of T so; that means, for orthogonal

transformation. So, T orthogonal implies  C of T is equal to 1. So, that is a second fact

that we wanted to proof.
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Namely if O is a orthogonal transformation, then the C of O the constant this way type of

here, this should have been determinant of O is because the unit circle with in inside unit

circle of is left invariant by the orthogonal transformation.
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So,  now  and  the  next  property, we  want  to  analyze  is  that  for  all  non  singular

transformation T 1 and T 2 C of T 1 T 2 is equal to C of T 1 times c of T 2; that means, is

map is multiplicated the map T going to C of T is a multiplicating map, namely if I look

to transformation T 1 and T 2 then c of T 1 T 2 is same as c of T 1 times c of T 2.
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So, let us look at a proof of that T 1 and T 2 are transformations form R 2 to R 2. So, we

are going to look at. So, let us write T is equal to T 1 T 2, then we to compute C of T 2.

So, we are going to look at the measure mu of T T which is equal to. So, let us take any

set. So, so let Eb any set which is the boreal set.

So, let us look at lambda of lambda R 2 of T 1 T 2 applied to E. So, let us look at this by

definition  of  the  constant  C of  T is  C of  T 1 T 2 because  T 1 T 2 is  a  linear

transformation applied. So, this composite T 1 T 2 is applied to E. So, by definition of C

of T 1 T 2 that should be equal to C T 1 T 2 of Lebesgue measure of the set E, on the

other hand we can also think of this as lambda Lebesgue measure of R 2 of T 1 applied

to T 2 of E. So, this composition T 1 T 2 is same as saying the linear transformation T 1

is applied to the set  T 2 of  E, but if you do that then you know that this is equal to

lambda R 2 of it is lambda R 2 of T 1 of a set. So, it is CT 1. So, this is equal to CT 1

times lambda R 2 of T 2 of E and now, that once again lambda R 2 of C of 2 of E gives

you C T 2 and the original name C T 1 into lambda R 2 of E.

So, we get that C of T 1 T 2 and the Lebesgue measure of any set E is same as is same as

C T 2 into C T 1 of Lebesgue measure of E. So, this happens for every set  E. So, that

implies. So, this implies that C of T 1 compose it T 2 is same as C of T 1 times C of T 2.

So, this map is a multiplicative a map. So, this is the property we wanted to prove. And



now, we need another fact from a linear algebra namely what is called a singular value D

composition for linear transformations.

So, in case we have not come across this theorem called singular value D composition

for linear transformations. Please, look into the text book that we have says it namely an

introduction to measure and integration and look at the appendix of that book. You will

find  a  proof  of  this  singular  valued, singular  value  decomposition  for  linear

transformations.

So,  let  us  take  what  is  the singular  value  decomposition; it  says  the at  every linear

transformation T can be represented as a product of 3 transformations were the first one

P and  the  last  one  Q are  both  orthogonal  transformation. P and  Q are  orthogonal

transformations and this D is a diagonal transformation. So, every linear transformation

T can  be  represented  as  P times, D times, Q were  P and  Q are  some  orthogonal

transformation and D is some diagonal transformation. So, this is a theorem called the

singular value decomposition in linear algebra. So, please have a look at a proof of this

in case you have not come across this theorem in the text book mention.

So, once we know that for every linear transformation T can be represented as P times D

times  Q. So, and the property  3, just know ready to says that the constant  C of any

composite is a product. So, we apply that property through this. So, we get C of T will be

equal to  C of  P times  D times  Q which is nothing, but the product.  So, the  A C of

transformation T will be C of P into C of D into C of Q.
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So, we get that the constant for any linear transformation T is equal to the constant for

some orthogonal transformation P times the constant for a diagonal transformation D and

the constant for another orthogonal transformation Q.

But just now, we have observed that for orthogonal transformations the C of orthogonal

transformation the constant associated is 1. So, C of P is 1 and C of Q is 1. So, that gives

you C of T is equal to C of D, because both first and the last multiplicative things are 1

that is C of D and for diagonal transformation, we have already shown. This is equal to

determinant of  D. So, for the linear transformation  T the constant  C of  T is equal to

determinant of  D, where D is the diagonal transformation which appears in the similar

decomposition.
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T is equal to P D Q, but on the other hand, we can also look at the determinant of T from

this,  so determinant  of  T. We call  that  determinant  is  also a  multiplicative  map.  So,

determinant of T will be equal to determinant of P into determinant of D into determinant

of  Q, but  determinant  of  P and determinant  of  Q both are  equal  to  1.  So,  that  says

determinant of T is equal to determinant of D. And just now we said determinant of D is

equal to C of T.
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So, combining these 2 we get determinant of T is equal to determinant of D. So, sorry we

get determinant of they should be C of T is determinant of D.

So, that is says that C of T should be equal to determinant of D. So, here it should be this

is  redundant.  So,  C of  T is  determinant  of  D, and  determinant  of  D is  equal  to

determinant of T. So, this to combine together gives you C of T is equal to determinant

of T. So, that completes the proof of the fact that for a linear transformation. So, we have

completed the proof that for a linear transformation.
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If you take the set E and change it transform it by a linear transformation that is same as

determinant of t times the lebesgue measure of E.

So, the lebesgue measure of transform set is determinant of t times the lebesgue measure

of the set e. So, that proves the theorem for all sets which are boreal measurable sets. So,

till  now we have proved the  theorem only  for  boreal  measurable  sets  would like  to

extend  this  theorem  for  lebesgue  measurable  sets.  So,  for  that  let  us  observe  the

following how are the lebesgue measurable sets in R 2 obtained from lebesgue from

boreal measurable sets what is the relationship between lebesgue measurable sets and the

boreal measurable sets.
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So, the first property is that if let us take any set  N, which is in  R 2 and says that its

lebesgue outer measure is 0. We look at sets of lebesgue outer measure 0 in the plain. So,

we  first  claim  that  under  any linear  transformation  T, the  image  is  also  a  lebesgue

measurable set of measure 0; that means, linear transformations take sets of measure 0 to

sets of measure 0 in plain.
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So, to prove that let us observe the following thing. So, let us take a N, a subset of R 2

and lebesgue measure of N equal to 0, but saying lebesgue measure of N is equal to 0 is

same as saying for every epsilon bigger than 0. There exist rectangles; say R i I bigger



than or equal to 1, such that the set N is contained in the union of this rectangles R i and

the lebesgue measure of the rectangle R i added together is less than absolute.

So, saying set is a null, set is same as saying. It can be covered by rectangles such that

the total measure of the rectangles put together is less than epsilon, but note now. So,

each R i is a rectangle. So, it is a boreal set is a boreal sub set of R 2. So, that implies the

T of R i also is a boreal sub set of R 2 for non singular linear transformation T. If T is

non singular and the lebesgue measure of T of R i by what we have proved just now is

equal to determinant of T times, lebesgue measure of lebesgue measure of R i. Statist this

now were prove for boreal sets this property holds.

So, now the fact that N is covered is covered by union of RIS is implies. So, this fact star

implies the T of N is covered by the union of T of R i. I equal to 1 2 infinity. So, this is

contained by T of R i. 
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So, that implies by the countable subordity property of the lebesgue measure, outer of

lebesgue measure R 2 of T N is less than or equal to summation I equal to 1 to infinity.

Lebesgue outer measure of T of R i and lebesgue measure of T of R i is determinant. So,

this  is equal to determinant  of  T absolute value time’s summation of  I equal to  1 to

infinity lebesgue measure of R i and that is less than epsilon. So, it is less than or equal to

absolute value of determinant of T times epsilon.



And since this  property holds. So, this holds for every epsilon bigger than  0. So, let

epsilon go to 0. So, that will imply lebesgue measure of outer measure of T of N is equal

to 0. When T is, if T is non singular and for a singular transformation we know T of R 2

itself is 0. So, T of N will be 0. So, this proves the fact that for every set N, which is of

lebesgue outer measure 0, lambda the image T of N under any linear transformation is

again a set of measure 0.


