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Let us look at another example. Let us look at two sets. Once again the underlying space

is same X is equal to Y is equal to 0, 1; and A the sigma algebra on both of them is equal

to the oral sigma algebra. And now let us look at measures mu equal to nu to be the

Lebesgue measure. So, basically what we are doing is we are taking 0, 1, the Borel sigma

algebra and the Lebesgue measure and take a copy of it and take the product of that

Let us define a function of two variables f x, y to be equal to x square minus y square

divided by x square plus y square to the power 2 if x and y is not equal to 0 0 and it is

equal to 0, if it is 0, otherwise. So, first of all we want to claim that this function f of x, y

is a measurable function on the product sigma algebra. So, for that one has to look at the

basic  properties  of  functions  of  two  variables  one  can  show  that  this  function  is

continuous everywhere except at 0. So, it is a almost everywhere continuous function of

two  variables.  And  hence  it  is  going  to  be  measurable  function  with  respect  to  the

product sigma algebra that is a Borel sigma algebra on the square 0, 1 cross 0, 1.



So, saying that f is a measurable function requires a proof and the proof I am giving you

the hint the hint is as follows. Look at this function this function as a function of two

variables. So, let me just write down the step, so that you are able to verify yourself later

on.
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Let us look at the function f on X cross Y, so that is 0, 1 cross 0, 1 to R. So, this is a

function which we are a saying is f of x, y, x square minus y square divided by x square

plus y square if x, y not equal to 0 0; and it is equal to 0, if x, y is equal to 0, 0. So, the

claim is this function f is continuous on X cross Y that is 0, 1 cross 0, 1 except at the

point 0 0. So, at 0, 0, if you can you can see that if I take y to be equal to 0 that is x

square divided by x to the power 4, so it will looks like 1 over x square and as I suppose

is 0 that is going to blow up. So, it is not continuous at the point 0, 0.

But that does not an matter so; that means, f is continuous almost everywhere because

one point does not matter. So, implies f is continuous almost everywhere. So, and this

continuous almost everywhere implies f is Borel measurable, because continuous means

inverse images of open sets are open and hence they will be Borel sets. And to show that

Borel set is Borel you apply that sigma algebra technique. So, this we have shown that

every continuous function is continuous almost everywhere is the Borel measurable. So,

using in this step, you will be using the sigma algebra technique. So, look at all sets for



inverse images are Borel open sets are inside and so on. So, this I will prove that this is a

measurable function.
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Now, let us compute the iterated integrals of this function with respect to that measures

separately. So, let us first observe that for every fixed x. So, let us look at for every fixed

x if I fix x any point then this is a function which looks like minus y square divided by x

square plus y square whole square, so that is function of y for every x fix continuous

almost  everywhere except  at  the point  0.  So,  it  is  going to be a Riemann integrable

function.  So,  it  is  a  function  for  every  fixed  x,  it  is  a  function  which  is  Riemann

integrable  function of y. And if  you look at  the integrant,  it  is  the derivative  of the

function y divided by x square plus y square.

So, partial derivative of the function y divided by x square plus y square is equal to f of

x, y. So, I know the anti derivative of this function for every fix x. So, I can integrate it

out with respect to the variable y. So, when I integrate f x, y with respect to the variable

y, because  it  is  a  Lebesgue measure  you are integrating  and for  Riemann integrable

function Lebesgue integrally same as the Riemann integral. So, that will give me that the

integral 0 to 1 of f x, y d nu y is equal to 1 over because y is 1, so that will give me

integral of this is equal to 1 over 1 plus x square.
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And now that we want to integrate with respect to x. So, integrate this with respect to x

and that we know how to integrate this function 1 over 1 plus x square by substitutions

putting trigonometric substitutions. So, we leave it for you to verify that the integral of 1

over 1 plus x square between 0 to 1 is equal to pi by 4. So, one of the iterated integrals

this equal to pi by 4, but a simple observation in the function tells me that if I change x to

y. So, let us look at the function if I change x to y interchange x and y then you get a

negative sin outside because there is a negatives x square minus y square.

So, I do not have to compute the other iterated integral by using this property then if I

interchange x and y that gives me a negative sign. So, if I want to integrate first with

respect to x and then with respect to y, it will answer will be same as the earlier one with

the negative sign. So, the other integral is going to be minus pi by 4. So, for this function

of two variables, we have got two iterated internals, one of them equal to pi by 4 and the

other is minus pi by 4, and both the measures here are sigma finite.

So, the question is  what is  going wrong. So, we have got two sigma finite  measure

spaces clear the same measure space 0, 1 Borel sigma algebra and Lebesgue measure.

And on this we may got a function f x, y equal to x square minus y square divided by x

square  plus  y  square  when  not  point  is  not  0,  0;  and  this  function  has  got  iterated

integrals which are different. So, this not contradict Fubini’s theorem. The answer is no

this is simply because though this you iterated integrals are different because the function



is not integrable on the product space. So, we cannot apply Fubini’s theorem-2 to it. So,

let us verify that with respect to the product sigma algebra, the function is not integrable

and that is a very simple observation.
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So, let us look at that. So, look at the function for two variables. So, let us look at mod of

f x, y. So, this mod of f x, y respect to two variables this is a nonnegative function. So, by

Fubini’s theorem-1, we know that this is equal to the iterated integral of mod f x, y with

respect to same variable y, so that we can because the integrant is nonnegative and x is in

the inner integral the x is fix between 0 and 1. So, we can write the iterated integral from

0 to x. So, it will become bigger than or equal to. So, the integral of f should value of f x,

y with respect to the product sigma product measure is bigger than or equal to integral 0

to 1 integral 0 to x of mod f x, y d nu y, but mod of that is nothing but 1 over x.
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So, let us just look at mod of and 0 to x, here x is fix with respect to y. So, once you

compute that inner integral, so that is nothing but 1 over x, 0 to pi by 2 cos 2 theta and

those and that can be computed and that comes out to be 1 over 2. So, it is 1 over 2 x d

mu x which is equal to plus infinity because 1 over x is not integrable. So, a simple

computation shows that this function is not integrable. So, as a consequence, the again

the Fubini’s theorem is not contradicted because the two integrals are not equal because

the function is not integrable.
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Let  us  look  at  an  application  of  Fubini’s  theorem.  We want  to  prove  that  if  f  is  a

integrable function on X, A mu; and g is another integrable function on Y, B we nu then

look at the product of the two functions f x and g y. So, phi x, y is equal to f x into g y

the claim is that this function is integrable and its integral is equal to the integral of f into

integral of g.
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So, let us show this as a simple application of Fubini’s theorem. So, we want to look a

function f, so, we have got emerges space X, A, mu of course, sigma finite and f is a

function defined on x and f belongs to L 1 of X. And on the other hand, for Y, B, nu we

have got a function g Y to R and g belongs to L 1 of Y. So, define phi. So, we are

defining a function phi on X cross Y taking values in R and the function defined is phi of

x, y is equal to phi of x, y is equal to f x g y for every x, y. So, claim that phi belongs to l

one of X cross Y, so that is what we want to a show.

So, let  us see how does the proof how will  the proof go how will  the proof of this

theorem goes. So, phi belongs to L 1, so that is we want to show mod phi x, y integral

over X cross Y d mu cross nu is finite. So, this is what we want to show. So, to show that

it is enough to show, so let us observe to show this enough to show because of Fubini’s

theorem one or earlier. So, to show this, so this is what we want to show.
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So, enough to show say for example, integral with respect to Y of phi x, y integral with

respect to X this is d nu of y d mu of x is finite, so enough to prove this that this is finite,

but let us compute what is this quantity. So, this quantity is equal to the inner one integral

over y phi x, y is f x g y. So, it is mod of f x mod of g y d nu of y integral over x of d mu

x. So, this which we want to show is finite is equal to this. Now, this is independent of

integral x is fix. So, this is independent. So, it is integral over x mod of f x inside is

integral over y of mod of g y d nu y d mu of x. And now g is integrable. So, this quantity

is finite. So, this quantity is finite. So, what is that quantity equal to.
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So, let us write what is this quantity equal to. So, this quantity is equal to. So, this is a

constant, it is finite. So, it comes out. So, I can write this quantity is equal to integral

over x mod f x d mu x integral over y mod g y d nu of y and that is finite because both of

them are finite. So, what we have shown is that integral of mod of f x, y the iterated

integral is finite, so that just now we observe that is equivalent to saying that the function

mod f x, y is less than finite. So, this will imply that phi belongs to L 1. So, phi is a L 1

function. So, we have proved.

So, let us just say. So, this last thing that we proved implies that phi is L 1, because of

product space X cross Y. Because it is in L 1, so Fubini’s theorem is applicable. So,

implies by Fubini’s theorem-2 that the integral often X cross Y of phi x, y d mu cross nu

is equal to the iterated integral  either one we can write.  So, let  us a write it  over X

integral over Y of phi x, y what that is f x g y d nu y and d mu x. And that as now just

now we have observed this is independent of the integrant is independent of y. So, this

we can take it out. So, this is equal to integral over X f x integral over Y integral over g d

nu d mu and that is precisely. So, this integral that we are written is precisely equal to

integral over x of f x d mu x.
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The first one and the second one is integral over y g y d nu y right,  so that is how

Fubini’s theorem is apply. So, you have seen that two applications of Fubini’s theorem to

proof this result namely that if f is L 1. So, if f is a L 1 function then and g is a L 1



function on y then the product is a L 1 function on the product space and integral is equal

to the product of the 2. So, this is how Fubini’s theorems are going to be applied. So, let

me just recollect or revise what we have done till now given product given the product

measures X, A, mu, and Y, B, nu which are both sigma finite we constructed the product

sigma product sigma algebra A times B the product measure mu cross nu. So, we got the

product measure space X cross Y A times B and mu cross nu.

So, for this product measure the first thing we did was how to compute the measure of a

set in the product sigma algebra. So, we said we can go a sections, so that give us that the

product measure mu cross nu of a set E is same as you look at the x section E x, look at

the measure of that nu of E x and integrant with respect to x, or similarly do with respect

to y. So, that give us ways of computing the product measure of a set in the product

sigma algebra. And that result when interpreted as an integral give us the first Fubini’s

theorem namely for nonnegative measurable functions, you can fix one variable at a time

and integrated out. And then we extended this to functions of two functions which are

not necessarily nonnegative, but integrable. So, those give us the Fubini’s theorems.

So, in the next lecture, what will do is will now specialize when x is the real line, y is the

real line, a is the Borel sigma algebra, b is the Borel sigma algebra or Lebesgue sigma

algebras and look at product of the Lebesgue measure on x that is real line and product

measure and Lebesgue measure on y that is again real line. So, will look at the Lebesgue

measure space on the real line and take its product with itself to come to a notion of a

measure Lebesgue measure on the plane, which will extend the notion of area in the

plane. So, we will continue this study in our next lecture.

Thank you.


