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Let us just go through this proof through the slides once again. So, that we have a clear

idea what we are doing. So, the step one the required claim holds when f is a indicator

function of E that is the previous theorem that we have proved. And step 2, the required

claim holds when f is a nonnegative simple measurable function. So, from step 1 to step

2, one goes via the fact that integrals are linear operations; and then one goes to step

three that the required claim holds when f is a non-negative measurable function, so that

requires applications of basically applications of monotone convergence theorem
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So, step 3 is the crucial  one where lot of applications are of monotonic convergence

theorem are used. So, let us just go through that again. So, let  s n be a sequence of

nonnegative simple measurable functions such that s n increases to f, so that is by the

fact that f is a nonnegative measurable function. So, now let  us fixed X, so then the

sequence s n x. X is fixed, so in the variable y is a sequence of nonnegative simple

measurable functions on Y. And it increases to the function f of x y for X fixed. So, point

wise s n x dot as a s x fixed s n x as a function of Y increases to the function f x as a

function of y. So, an application so this is increasing,  so an application of monotone

convergence, and monotone convergence theorem is not required here.

So, this is a limit of increasing sequence of measurable functions so that says that the

function y going to f of x, y is a nonnegative measurable function because this function is

a limit of measurable function. So, first fact to being used is that limits of measurable

functions is a measurable function. And now we can also apply monotone convergence

theorem to conclude that the integral the iterated integral of s n must come converge to

the iterated integral of f with respect to y.
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So,  that  is  the  first  application  of  monotone  convergence  theorem  that  for  the

nonnegative measurable function f for the variable x fixed, it is a integral with respect to

the variable y is well defined, because this is a nonnegative measurable function and it is

equal  to  limit  with  respect  to  n,  the  iterated  integral  of  the  nonnegative  simple,  a

measurable functions s n with respect to y. And now this result also says that this equality

also says  that  this  the right  hand side treated  as  a  function of x,  so that  means that

convergence  to  this  integral  right.  And by the fact  that  the required result  holds  for

nonnegative simple measurable functions, this function integral of s n with respect to y is

a measurable function of x. So, here we are using the step 2.

So, this is a sequence of measurable functions converging to a function so that means,

this integral must be a measurable function. So, again limits of measurable functions are

measurable, so that gives you that x going to integral over y f x y dy. So, the iterated

integral  of  f  with  respect  to  y  is  a  measurable  function  with  respect  to  x;  and it  is

nonnegative.  And once again this is a nonnegative function, and it is a limit  of these

integral limits of this measurable functions. So, another monotone convergence theorem

application gives that integral of the iterated integral of the integral of s n with respect to

y, its integral with respect to x must come to the corresponding integral of f with respect

to x.
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So, here we are applying monotone convergence theorem that the integral over x of the

integral of f with respect to y must come must be limit of the corresponding integrals

with  respect  to  the  nonnegative  simple  functions.  And  now  come  back  and  for

nonnegative simple functions, we know the result is true. So, this iterated integral must

be equal to the double integral, so that says so this is equal to the double integral. And

now s n is a sequence of nonnegative measurable functions on the product space, so this

again by either you can say application of monotone convergence theorem what just by

the definition this limit must be. So, this is equal to this and the limit of that must be

equal to the integral of the function f over X cross Y, so that says the corresponding

result holds.
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So, this iterated integral of f is equal to the double integral of f with respect to mu cross

nu.
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And similarly the other thing can be proved you can interchange the variables x and y.

So, the result is true. So, this is a result which is called Fubini’s theorem one which says.

So, this is the first Fubini’s theorem if it says that for a nonnegative measurable function

on the product space if you want to integrate find its integral with respect to the product

measure,  you  can  do it  by  integrating  one  variable  at  a  time.  Either  you  can  fix  x



integrate out with respect to y, and then integrate with respect to x or interchange, choice

is yours you can first integrate with respect to x and then with respect to y. So, the two

iterated  integrals  for  a  function  of  two  variables  is  equal  to  the  double  integral  for

nonnegative measurable functions. So, this is called was first Fubini’s theorem which

helps one to integrate functions of two variables. So, next we want to show that this

result  also holds for functions which are integrable.  So, we want to prove that for a

integrable function the corresponding result holds.
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So, let us look at the proof of that. So, let us look at. So, let us take a function f which is

L 1 on X cross Y, it is integrable with respect to X cross Y. And we want to say that that

the integral of f x y over X cross Y d mu cross nu. We want to say that this integral on

one hand is equal to you can integrate first x, y with respect to nu, we want to claim this

with respect to y over y, and then integrate out that with respect to x, so d mu x. Or one

should be able to say that this is also equal to you take the function f x, y integrate out

the variable with respect to mu, so x and then integrate out with respect to y d nu of y.

We want to say that these two this results hold.

Now for  that  on obvious  if  these equations  are  true  hold  where f  is  not  necessarily

nonnegative so; that means, what first of all the inner integral, for example, the integral

of f x y with respect to y must exist. That means, we should be able to say for a function

of two variables, which is integrable when I fix the variable x as a function of y that is



integrable. So, that is integrable and then that gives us a function of x and then we should

be able to say that is integrable with respect to x and finally, these two are equal. And

similarly, the other result  must hold. So, the theorem which we want to prove is the

following namely that is called Fubini’s theorem 2.
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So,  namely  if  f  is  a  integrable  function  f  is  a  integrable,  so  we want  to  prove  the

following that if f is integrable function then the following statements are true namely

one that for the function of two variables. If I fix either of the variable then with respect

to other variable its integrable not for all, but we are able to say that the function x going

to f x, y and y going to f x, y for the other variable are integrable for almost all y and for

almost all x.

So, for almost all fixing of coordinate, the other variable it becomes a function which is

integrable with respect to the other one, so that is one. And then secondly, once these are

integrable, you can integrate out. So, it says that the function y going to integral of f over

x with respect to mu; and similarly the integral of f with respect to Y, these two are

defined almost everywhere. And of course, they are defined almost everywhere and are

integrable.
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And hence the third step says they are integrable and indeed the integrals the iterated

integrals are equal to the double integral. So, we would like to prove this theorem. So, to

prove this let us proceed as follows. So, we are given that the function f belongs to L 1 of

X cross Y.
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Let us write the positive and the negative parts of the function. So, f is equal to f plus the

positive part minus the negative part. And there is the integral of f x, y with respect to the

product measure mu cross nu is equal to integral of the double integral of f plus with



respect to the product measure minus the integral of the negative part the mu cross nu

over X cross Y, so that is a definition of the integral. If f is integrable then the integral of

the function is nothing but the integral  of the positive part  minus the integral  of the

negative part of the function.

So, now let us look at them separately. So, f plus x, y of course d mu cross nu over X

cross Y. So, f plus is the nonnegative function and is a nonnegative measurable function.

So, by the result Fubini’s theorem-1, I can write this as integral over x integral over y f

plus x y integral over f x, y d nu with respect to y and then d mu with respect to x. So,

implies  by  Fubini’s  theorem-1  that  is  Fubini’s  theorem  for  nonnegative  measurable

functions that integral of a nonnegative measurable function can be computed by iterated

integrals. So, this is and also equal to let us write the other one also, you can interchange

integral over X f plus of x, y d mu x and d nu of y. So, this is for f plus we have used the

Fubini’s theorem-1. And now let us observe f being integrable this quantity is finite.
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So, all these integrals are finite quantities so that means, so this the all this being finite

implies,  so for example,  the first one implies, so implies because of integrability that

integral over x integral over y f plus x y of d of nu y d mu x is finite. Now, so here is an

important observation that we have earlier proved that if the integral of a function is

finite,  then the function must be finite.  So,  here we are using integral  finite  implies

function finite almost everywhere. So, this we had already proved. So, this fact we are



going to use now. So, look at this inner this integral with respect to mu of this function is

finite, so that implies that the function. So, this as a function of X, X going to integral

over Y of f plus x, y d nu y is finite almost everywhere almost everywhere with respect

to x. So, we have used the fact that integrable function implies that the function is finite

almost everywhere.

And now once again for almost all x this is finite, that means so this also implies that the

function, so y going to f plus x, y is finite almost everywhere, and of course, integrable

because this integral is finite almost everywhere. So, is a function which is integrable

and finite almost everywhere. So, implies I can integrate out and this is a nonnegative

function,  it  is  integrable  and  nonnegative  integrable  function.  So,  we  have  for  this

already seen this is equal to so that we have already seen that for nonnegative measurable

function this is equal to this integral.

So, similarly the function for x going to f plus x, y is finite  almost everywhere and

integrable is also integrable; and the corresponding results also hold for similar results

holds for f minus so that means what so all those four functions are finite and integrable.

So, we can integrate them out and we have the results corresponding results for so these

are all integrable.

(Refer Slide Time: 16:31)



So,  that  is  the  first  part  that  these  functions  are  integrable  almost  everywhere  and

correspondingly almost everywhere with respect to x and y, and these functions are also

defined and are integrable.
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So, that means, we have the following, so they are all integrable and finite and for f plus

x y of respect to X cross Y, the mu cross nu, we have got this is equal to is iterated

integral with respect to x with respect to y of f plus x, y d nu d mu. And similarly for the

negative part we have x, y d mu cross nu X cross Y is equal to integral over y integral

over x of f minus x y d nu d mu. So, all these are finite quantities because f plus and

everything is integrable. So, these are all finite quantities this is finite and this is finite.

So, I  can take the difference of the two. So, the difference of the left  hand side,  so

subtract  second from the  first.  So,  and use  the  fact  that  integrals  are  linear. So,  the

difference  subtract  implies  subtraction,  and also the corresponding identity  is  for the

other one interchange thing. So, this is also equal to integral over Y integral over X of f

plus d nu d mu right for nonnegative that is true.

So, we will subtract this from this. So, we will get integral of f d mu cross nu X cross Y,

because integral of f plus minus integral of f minus is integral of f is equal to the iterated

integral of f plus with respect to x y minus the iterated integral of f minus with respect to

the same iterated integral. So, that will give you y integral of respect to x of f of f plus

minus f minus, so that is f of x, y the nu d mu. So, that will  prove that the for the



integrable function the double integral is equal to iterate integral one of them the other

proof is similar.

So, basically this result that for integrable functions the corresponding interchange of

integrals hold is basically coming from the previous result namely that the corresponding

result holds for nonnegative in simple nonnegative measurable functions. So, what we

have proved is to Fubini’s theorem-1 and Fubini’s theorem-2, Fubini’s theorem-1 says

that  for  nonnegative  measurable  functions  the  double  integral  the  integral  over  the

product space can be computed by integrating one variable at a time; and similarly this

can also be done for functions which are integrable. So, we will continue this Fubini’s

theorem a bit more and then specialize it for integrals for R 2, R 3 and so on.

Thank you.


