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So now we have got E n decreasing. So, because E n belongs; so, what we said first thing

was that because E n belongs to p. So, this is a measurable function. So, that is a property

of the set E n being in the class p. So, increasing or decreasing is not coming into picture.

So, this step will carry over and then if E n is increasing to E. 
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So, now we have got E n is decreasing to E. So, this thing will change. So, if E n are

decreasing then of course, it is true that the sections E n x will be decreasing to the set,

the section of the set E at x. So, if the sections E n x will decrease through the set Ex. So,

that step also will be ok.

Now, we want to say that when E n decrease to E. So, we want to say that here we use a

property that, for the increasing case we said whenever a sequence increasing nu of Ens

converge. The corresponding result we know it is not true for decreasing sequences. So,

here the proof trying to copy the proof, for the increasing thing will fell down because

these steps will not this equation star will not hold, to make this star hold, we have to put

extra  condition  that  the  measures  are  finite  because  if  measures  are  finite  then  E  n

decreasing to E will imply measures converge.

So, if E n mu and nu are finite say for example, if nu is finite. Then E n sections of each

E n that is a decreasing sequence. So, nu of E n will converge. So, to carry over the proof

the similar case, we have to put an extra condition. So, for this claim to hold we have to

assume that mu and nu are finite. 
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So, let us assume that mu of x is finite and nu of y is finite, of course that implies mu

cross nu of x cross y is finite. So, under this conditions we want to show that if E n

belongs to p, E n it decrease to E that implies E belongs to p. So, to show that we just

now we can repeat the steps.

So, E n let me just go through the proof again for the decreasing case also, to emphasize

where exactly we will be using the finiteness condition. So, E n decrease to E. So, that

implies that the sections E n x decrease to E of x. So, that implies that mu of E n x oh

sorry a nu of E n x, because E n x is a subset of b the subset in b. So, this converges to nu

of E x. So, this is the stage we will be using this condition plus. So, under this condition

plus that mu and nu are finite, this holds now each E n belongs to p. So, each one of them

is a measurable function. So, that will imply that x going to nu of E x is measurable.

So, this is a measurable function and we have got nu of E n x decreases to nu of E of x.

So, earlier we use monotone convergence theorem to conclude that nu of ex integral of

nu of ex must be limit, but here it is a decreasing sequence. So, we cannot use monotone

convergence  theorem.  Also  here,  but  let  us  note  so  here  is  a  observation,  note  that

because mu of a x is finite, nu of y is finite. So, this function mu x going to each of the

functions nu of E n x is an integral  function.  Why is that because it is a decreasing

sequence.
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So, let us observe nu of E n x for every n, if I look at this non negative function it is less

than or equal to nu of E 1 of x and nu of the section E 1 x integral over x d mu x right, is

less than or equal to nu of E 1 E 1 x is less than or equal to nu of y and So this is

integrant is less than nu of y. So, integral of 1 d mu x is less than mu of x right. So,

which is finite; so, nu of E 1 x is a integral function on the measure space y b nu and

each nu of E n x is less than or equal to. So, each nu of nu E n of x is integral.

So,  we  can  apply  a  dominated  convergence  theorem.  So,  dominated  convergence

theorem applied to the fact that,  nu of E n x is  a sequence of non negative integral

functions and they are decreasing to the integral to the function nu of E x. So, this is also

a integral. So, implies by dominated convergence theorem and this observation that the

function nu of ex d mu x over x, is this function is integral and its integral is nothing but

the limit  n going to infinity  of integrals  nu of E n x d mu x. So, for the decreasing

sequence the proof differs in both the steps, first of all when we want to say that E n r are

decreasing the sections decrease.

So, the finiteness conditions allow us to say that nu of ex is a limit of these functions and

that implies that this is a measurable function. So, finiteness says and this function is

measurable  because  of  this  fact  and  in  fact,  the  finiteness  conditions  says  this  is  a

sequence  of  integral  functions  decreasing  to  the  function  this.  So,  dominated

convergence theorem can be applied and that gives us this limit is equal to. So, nu of E x



integration with respect to mu is limit of and now the proof is as before this E n be being

in the collection p. So, this integral is nothing, but measure of mu cross nu of the set E n.

So, that is limit n going to infinity of measures of the sets E n and once again E n s are

decreasing to E and mu cross nu is a finite measure. So, that will imply so this is equal to

Mu cross nu of E, again using the fact that mu and nu are finite.
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So, we get the conclusion, that again using finiteness condition namely that the integral

nu of ex d mu x over x is equal to. So, we have already shown it is the class p is close

under increasing sequences, now we have shown it is closed under decreasing sequences.

So,  p  is  a  monotone  class.  So,  that  proves  that  p  is  a  monotone  class.  So,  as  a

consequence of the fact that p is a monotone class, the consequence of this would be

namely that we already have f of r is inside the class p and p is a monotone class. So, that

will imply that the monotone class generated by f of r will also be inside p.

But this is nothing, but the sigma algebra, generated by the class r of rectangles or same

as the  sigma algebra  generated  by rectangles  and that  is  same as  the product  sigma

algebra. So, that will prove that the product sigma algebra is equal to p, namely that the

required conditions hold for the corresponding. 
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So, that proves a step 2 namely, that p is a monotone class and that implies that the

monotone class generated by f of r is inside p and hence that will prove that monotone

class generated by f of r is a algebra. So, the monotone class generated by the algebra, is

precisely the sigma algebra generated by E. So, A cross B will be inside the class p and

hence everything is inside. So, a b cross b is equal to p.

So, this is a theorem where we have used very sensibly, the fact that when mu and nu are

finite  in  that  case,  we  can  extend  that  argument  of  the  increasing  to  the  case  of

decreasing also.  This  also illustrates  the technique the monotone class  sigma algebra

technique. So, we have proved the theorem required claim, that p is a monotone class

under the conditions mu and nu are a finite.

So, now with the usual arguments one can extend it to the case when it is sigma finite.
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 So, let us see that, but before doing that let me just go through the proof of the step 2

again, to illustrate the basic facts. So, the first thing we looked at was if E is a product set

A cross B. So, I am just revising the proof of step 2 to highlight the important points in

the proof. So, A cross B belongs to r is a rectangle then nu of ex. So, that is the first step,

the showing that r is the class in r will includes a rectangles. So, there we use the fact

that, if you take a set which is a rectangle. Then intersection is nothing, but either the set

A or the set B or the empty set according to the point x or y.

So, nu of ex is thing, but nu of b times the indicator function of x because if x does not

belong to a then this is 0 and the section is just b and similarly mu of E y is mu of a times

the indicator function of b. So, these 2 facts prove that, x going to nu of E x and y going

to nu E y for rectangles are measurable functions and if we integrate because this. 
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So, integral of nu will be equal to nu of B into nu of A. So, that is the product measure of

the product set A cross B. So, that says the rectangles are inside. So, that is the straight

forward argument, which says rectangles comes inside a p. Showing that p is a close

under finite disjoined unions is also a straight forward because that follows from the fact

that, if E 1 and E 2 are 2 sets in the class p which are disjoined, then the sections are

disjoined of these 2 sets.

So, and the sections of the union is equal to union of the sections. So, as a consequence

of this the nu of the section of the union. So, E 1 union E 2 section at x nu of that is

addition, nu of E 1 x plus nu of E 2 x because the sections are disjoint and E 1 and E 2

both  belong  to  p,  imply  these  2  are  measurable  functions  and  hence  the  sum  of

measurable functions is measurable. So, this becomes measurable. So, that is a straight

forward proof of the fact that if E 1 and E 2 belong to p, then even intersection and their

disjoint, then the union also belongs to p and finally look at the integral.
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So, integral of nu of the section of the union because that splits into 2 parts. So, nu of E 1

union E 2 is nu of E 1 x plus nu of E 2 x with respect to mu.

So, the internal splits into 2 parts. So, that is mu cross nu of E 1 because E 1 belongs to p

and this is mu cross nu of E 2 because E 2 belongs to p and now using the fact that mu

cross nu is a measure that gives us this equal to mu cross nu of E 1 union E 2 and the

similar thing will work for the y sections. So, proving that rectangles are inside the class

p and p is closed under finite disjoint unions, is rather straightforward computation.
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The problem arises, when we want to show that p is a monotone class. So, there we first

assume that mu and nu are finite. So, once mu and nu are finite, we want to show it is

closed under increasing union and decreasing intersections.

So, take a sequence of sets E n which is increasing. So, a simple fact that if E n are

increasing  the  sections  are  increasing,  mu  and  nu  being  measures  imply  mu of  the

sections E n we will converge to mu of E. 
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So, mu of E x and nu of E y are limits  of measurable functions.  So, they become a

measurable. So, straight forward till now no finiteness condition has been used. So, this

is true whenever mu and nu are any 2 measures but for the decreasing part, where we

will need the finiteness condition. So, for the increasing part everything goes straight by

a monotone convergence theorem, application gives you nu of E x is limit of that and

that is equal to the product measure and everything is right.

.
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So, let us look at the part where we find the difficulty arises. 
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So,  difficulty  arises,  when  we  want  to  show that  if  E  n  belongs  to  p  and  E  n  are

decreasing, then the set E which is the intersection of E n also belongs to p. So, here the

main step is to conclude that, nu of E n x is equal to nu of ex. So, for that we need

finiteness condition because whenever sets a sequence of sets is decreasing to a set, then

measure of the sets need not converge to measure of the limiting set unless the measures

are  finite.  So,  finiteness  condition  will  give  us  that  and  then  instead  of  monotone



convergence theorem, we can apply the dominated convergence theorem to conclude that

mu cross nu of E n is equal to corresponding integral.
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.

So, that will prove that mu and nu being finite p is a monotone class, but still we are not

concluded the proof for the general case. So, for the case one can apply the usual sigma

finiteness criteria, namely whenever 2 measure the sigma finite the whole space can be

cut up into finite number, countable a disjoined pieces each of finite measure and on each

the result holds. So, put them together to get the result holds for the whole space. So, let

us see the argument how it  works because mu and nu are sigma finite. So, x can be

decomposed into a disjoined union of sets A i and y can be decomposed into a union of

sets B j. Such that a disjoint union such that, mu of each A i is finite and nu of each B j is

finite.
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So, using that we can write down that mu cross nu of A i cross B j is finite because this is

nothing, but mu of A i times nu of B j. So, as a consequence on each of these pieces our

earlier results was hold the p was a monotone class. So, let us see how that is used to

prove for a general set E in A cross B, for a set in the sigma algebra A cross B. Note that

the integral of the measure nu of E intersection A i cross B j x d mu x because each nu of

each of the sets has got a finite measure right.

So, we are applying the earlier result on the piece A I times B j. So, for every I and j

using the earlier case, we have that the integral over x of the x sections of E intersected A

i cross B j is nothing, but mu cross nu of E intersection A i cross B j and that is equal to

the mu integral of the y sections of the corresponding sets. So, this step follows basically

from the fact  that mu cross nu of A i  intersection B j  is finite and for any set  E.  E

intersection this rectangle A i cross B j, on that rectangle a mu and nu are finite. So, this

earlier case gives us the result and now we have to only sum both sides with respect to I

and j.
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 So, let us look at mu of mu cross nu of E, is equal to because the whole space is equal to

a mu in our I and j, of the rectangles A i cross B j that is a partition. So, mu cross nu of E

can be written as, using countable additively of the measure mu cross nu. As summation

over I summation over j mu cross nu of the pieces A i times B j and now for each one of

this piece we know the result holds.

So, I can write this as a integral of the x sections or as integrals of the y section. So, this

term mu cross nu of A i cross B j intersection E, is equal to this integral or this integral

because of the fact that for the finite case the result holds and now using the fact that if

you look at the section E intersection A i cross B j of x this section is nothing, but mu of

ex times Ai cross.
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So, this is a the small observation, that you look at set E and take its piece inside the

rectangle A i cross B j and take its section ok.

So, this section is going to be equal to the section of E intersection with B j. Of course, if

x belongs to E j and the facts does not belong to E j then there is not going to be any

intersection.  So,  this  is  going  to  be  empty  set.  So,  this  is  a  observation  and  that

observation can be used in this part that, if x does not belong to A i then this thing is

going to be 0. So, using that we can write that sum. So, this sum which was integral over

x of E intersection this can be written as. So, this set is nothing, but nu of E x intersection

B j because that is the only place where the section appears when x belongs to A i. So,

this is integral over A i of mu ex intersection B j.

So, this integral is equal to this because of this fact and now the summation over I means

that this integral is over x. 
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 So, this summation you can transform into integral over x and now you can interchange

the 2 integral and the summation again. You will be using fact here that this is a integral

which depends on j. So, you can push it out and take it inside, basically you will be

applying implicitly a monotone convergence theorem to say that this is equal to I. Can

take the integral sign x right and because this is a sequence of a functions which are non

negative measurable and So on.

So,  here  is  an  application  of  monotone  convergence  theorem,  which  helps  you  to

interchange  summation  and  the  integral  sign.  So,  summation  goes  inside  and  now

summations over B j are disjoined. So, that gives you over the whole space y. So, that is

just E x. So, you get that mu cross nu of E is equal to the integral of the section nu of ex

d mu x. So, you see that almost every step, we are using sum theorem at the other to

justify the facts. So, this is the case for the x sections and the similar result will hold for a

y sections.
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 So, that will prove that mu cross nu is also equal to integral over the y sections and that

will complete the proof of the fact that, one can reduce the result in the case of a sigma

finite. So, from finite to sigma finite is a almost a straight forward, in the sense that we

split the whole space into countable number of pieces a finite measure.

So, on each piece we apply and then sum it up to go back to the original piece. So, we

have proved the theorem namely, a how to compute the measure of a product Set.
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So, let us a observe one thing here namely, even if we start with measure spaces x A mu

and y B nu to be complete. The product measure space which we have denoting by x

cross y, A times B mu cross nu need not be complete. Because how do you do we get this

measure mu cross nu on a cross B. we looked at the product mu cross nu on rectangles

and extended it and defined the outer measure via that and then looked at the measurable

sets mu cross nu and that included this sigma algebra.

So, this A times B the product sigma algebra is not the sigma algebra with respect to

which of all mu cross nu measurable sets. So, it may not be complete. So, for example,

you can take any set A in x such that a does not belong to the algebra A and take any non

empty set B of measure 0, then the outer measure of mu cross nu will be equal to 0

because mu of b is equal to zero. But the rectangle a cross b does not belong to product

sigma algebra because A does not belong to A. So, in case one wants to look at the

completion of this so, that is possible.
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So, if  you look at  the sigma algebra A times B bar and denote that  to be the sigma

algebra mu cross nu, measurable subsets the product space. Then of course, the product

sigma algebra is inside it and that will be a complete measure space. So, you can say that

x  cross  y  and mu cross  nu  measurable  sets,  as  before  is  the  completion  of  product

measure space x cross y A times B, mu cross nu. So, this is just a small observation



which we should keep in mind that, the product sigma algebra which is a sigma algebra

generated by the rectangles need not be giving you a complete a measure space.
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However, one can always complete it and the corresponding result holds for sets in A

times B that is a small technical result. Which one can prove that, we had proved this

result for sets in the product sigma algebra namely you can integrate the sections and get

back the product measure. So, this also applies to any set E in the product sigma algebra;

that means, in the completion space also the corresponding a result holds. So, this is the

way we can compute the product measure of a set in the sigma algebra. I want to go

about  to  an  interpretation  of  this  result,  which  leads  to  a  very  important  a  result  in

integration of product spaces. So, what we had was the result namely.
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So, what we had shown is for every set E, in the product sigma algebra A times B we can

take its section with respect to every point x that gives us a set in the sigma algebra B.

So, we can define nu of that and that becomes we show it is a non negative measurable

function. So, I can integrate this over x with respect to mu, on the other hand I can also

take  the section of  E with respect  to  every point  y  and then take gets  measure.  We

showed that this sections belong to A, take it is measure mu of E y and we showed that

that is a non negative measurable function and I can integrate it over y d mu of y right

and we showed that, these 2 are equal. In fact, both of them are equal to the product mu

cross nu of E. 

But  a  simple  observation  that  the  measure  of  a  set  is  the  integral  of  the  indicator

functions. So, what is this, I can write it as integral over x this mu of E x, I can write it as

integral over y of the indicator function of E x y, d nu y and similarly this thing. I can

write it as integral over y mu of E y. So, that way I can write as integral of over x of the

indicator function of E y x d nu of y and then we should have d mu of x. So, integral

sorry this is E y. So, this is d mu of y. So, this is E y. So, there should be d mu of x and

then d nu of y ok.

And this product thing, I can write as integral over x cross y of the indicator function of

E d, the product measure mu cross nu. So, we get a integral representation of this result

namely that, I can take the indicator function of the set E. So, but note that this function

the indicator function of ex y is nothing but, see this is nonzero when y belongs to E x;

that means, x comma y belongs to E. So, this is just the indicator function of E x comma



y. So, and similarly this is also the indicator function of a E x y. So, everywhere it is

indicator function of E. So, what we are saying is look at the indicator function of the set

E and integrated with respect to y. So, keep x fix and integrate with respect to y, that

depends on x integrate with respect to x or take the indicator function of E, then integrate

with respect to x. So, keep y fix. So, that integral depends on y and integrate it over y.

So, that is another number that you will get.

And it says both of them are equal to integral of the indicator function of the set E with

respect to the product measure mu cross nu. So, let me just rewrite and show it to you in

the form in the slide.
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So, what we are saying is the result  that we proved just  now, for every set E in the

product sigma algebra A cross B. I can rewrite the result in the form of integrals that

namely, it is same as saying that the integral of the indicator function of E with respect to

the product measure mu cross nu. Is same as look at the indicator function it is a function

of 2 variables, for a this function of 2 variables I can fix an x if I fix an x and vary only y

then this  indicator  function becomes a  function of one variable  y. So,  it  says let  me

integrate this function, indicator function of E for a fixed x with respect to y. So, this

integral  is  can  be  computed  it  and  this  integral  depends  on  x  and  says  that  is  a

measurable function and its integral can be taken with respect to x with respect to the

measure mu and that is same as that integral.



And similarly instead of fixing the first variable x, I can fix the second variable as y I can

fix this as y. So, then this becomes a function of x, I can integrate it with respect to x. I

get a number which depends upon y and that function is integral with respect to y and

that integral is also equal to the original one. So, the result of computation of a product

measure of a set  E in the set  A cross B can be written  in terms of the integrals,  of

indicator function over the product set. So, basically this illustrates that to integrate the

indicator function which is a function of 2 variables, I can integrate as 1 variable at a

time.

So, this is an important result which is leads to an important result in integration that

given a function of 2 variables, if you want to integrate it with respect to the product

measure then this gives a hint then possibly what one can do is fix 1 variable of the 2

variable function. So, it becomes a function of 1 variable integrate it out the 1 variable

and then it becomes a function of the other variable, integrate out that variable also you

get the integral with respect to the product measure

So, we will prove this in the next lecture. Namely that this result can be extended to non

negative measurable functions on product spaces and eventually, it can be extended to

integral functions. So, that leads to the important theorems in the theory of integration on

product spaces called fubinis theorems. So, we will continue looking at that in the next

lecture.

Thank you.


