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So, as a next step we want to look at so, the space of Riemann integrable functions are

inside the class of Lebasque integrable functions. and there here is an observation which

one can observed from the proof of this theorem, that if a function is Riemann integrable

than it must be continuous almost everywhere. So, to conclude this observation from the

proof itself basically what we are to look at is that the function f is the limit of those step

functions  right.  there is  the  limit  of  the  step functions.  So,  if  you leave  aside  those

partition points. So, we can remember we can have concluded that f is limit of those step

functions phi ns and psi ns. 
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So, we concluded that. So, with that we concluded namely that here, this this is this is the

fact that we proved in our theorem that the limit of the step functions phi n and psi n is f

of x right. So, that almost everywhere. So, almost everywhere psi f is limit of psi ns and

psi ns are piecewise continuous functions they are step functions. So, the points where

psi ns may not be continuous are possibly the points of the partition points of pns. So, if

you pro pool together all the points partition points they will be at the most countably

money and if you remove them along with this almost everywhere set. So, outside a set

of measure 0 this function f will become continuous.

So, I am just indicating the possibility of a proof of that. So, those interested probably I

should look into the text book. and in fact,  the converse of this  theorem is also true

namely that if f is a bounded continuous function, which is bounded function which is

continuous almost everywhere then f is Riemann integrable so; that means, there is a

characterization of Riemann integrabe functions in terms of continuity namely a function

f is Riemann integrable if and only if it is continuous almost everywhere.

So, we are not given the proof of this. So, those interested probably should look into the

text book as mention above, the in an introduction to measure and integration in which

the complete proof is given, but what we have wanted to indicate that the proof of the

theorem proof of one part of the theorem namely for a Riemann integrable function it



should be continuous almost everywhere is already included in the proof of the fact this

now we proved that Riemann integrable implies it is Lebasque inegrable

So, that is a one part of the properties of the space l 1 ab that rab the space of Riemann

integrable functions is in lab.
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Now let us look at a metric on l 1 of ab. So, recall we have already shown that l 1 of ab a

is a vector space, we showed that if f and g are integrable functions then f plus g is

integrable f into g is integrable alpha times f is integrable. So, it is a linear space. So, it is

a vector space over the field of real numbers.

So, on this we are going to define a notion of a magnitude. So, for a function f in l 1 we

define it is what is called the l 1 norm of f to be the integral of the absolute value of f of x

d lambda x. So, this is called the l 1 norm of the function f which is in l 1. So, clearly it is

a number finite number because f is integrable. So, this right hand side exist and is finite

and your integrating a non negative function. So, the first property namely the norm l 1

norm of a function is bigger than or equal to 0 for all functions f in l 1 of ab. So, that is

obvious.

The second property namely (Refer Time: 04:46) this function f is 0 almost everywhere

then clearly integral of the function will be equal to 0, that we have already observe. So,

norms will be equal to 0 and conversely if the l 1 norm is equal to 0 then the function



absolute  value of f  of x being a nonnegative function,  it  is  Lebasque integral  0 that

implies that the function must be 0 almost everywhere. So, the second property namely

the norm is equal to 0 if and only if the function is 0 almost everywhere.

 and the third property which is that if you multiply the function f by alpha the norm of

alpha  f  is  equal  to  the absolute  value of alpha times  norm of f.  and that  is  obvious

because  in  the  definition  if  you replace  f  by  alpha  f  then  this  being  a  constant  the

property  observe  a  integral.  So,  the  integral  of  alpha  f  is  equal  to  mod alpha  times

integral mod f. So, that gives you the property that the l 1 norm of alpha f is equal to the

absolute value of the constant these which you have multiplying alpha mod alpha times

no norm of f 1.

And finally, the triangle in equality property namely if f and g are integrable functions

then we have already shown that f into g is also a integrable function. and integral of the

absolute value of f plus g will be less than or equal to integral of absolute value of f plus

integral of absolute value of g by the triangle in equality of numbers. So, that will give us

that the l 1 norm of f plus g is less than or equal to l 1 norm of f plus l 1 norm of g.

So, these are the properties of this magnitude or this norm of f 1 at this stage I just want

to point out that this is very much, similar to the Euclidean metric or Euclidean norm on

rn see on rn.
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For a vector x with components x one xn we normally define the norm to be equal to you

can take the norm to be equal to sigma mod of xi i equal to 1 to n. So, this is what is

called the l 1 norm on rn. and now so what you are a saying is that if x is a vector with n

components then this must be the norm l 1 norm.

Now, treat a function f defined on a interval ab to r. So, treat this treat as a vector with

components with as many components as points in ab. So, I want to treat this f as a

vector with components as many components as points in ab. So, for a point x in ab what

is the xth component of f is nothing, but f of x. So, you can treat f of x x belong into ab

as a vector. So, if you treat that way then what is the l 1 norm of f you would like to

define. So, keeping in mind. So, take the absolute values of the components. So, take the

absolute value of the components. So, this is component take it is absolute value and you

want to sum it and the summation is nothing, but integral d lambda.

So, this is in in that sense this is the perfect generalization of the ordinary l 1 norm on rn.

So, the only problem in this is that you do not have the property that if l 1 norm is equal

to 0 if and only if f is equal to 0. So, only we have got that the l 1 norm is equal to 0 if

and only if f of x is equal to 0 almost everywhere, but let us keep in mind that the l 1

norm does not change, if we change the function on in null  set on a set of measure

Lebasque measure 0. So, with with that observation in mind we from now onwards what

we do is in l 1 of ab we identify functions which are equal almost everywhere.

So, if 2 functions are equal almost everywhere.
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If  f  and g in l  1 are  same are equal  almost everywhere lambda,  then we treat  these

functions to be as same. So, with that understanding this becomes a metric dfg which is

equal to norm of f minus g l 1 norm of f minus g, becomes a metric on l 1 of ab and is

called the l 1 metric.

And the fact we wanted to the observation, I want to point out is rab is a subset of l 1 of

ab and. So, rab as I sub space with l 1 metric is not complete in the l 1 metrics. So, that is

an observation which you should read from that text book already mentioned. So, and

this  was  one  of  the  defects  of  Riemann  integral  that  motivated  the  development  of

Lebasque integral namely the space rab under the l 1 metric is not a complete metric. So,

so this is not a complete metric under the l 1 metric so, but there is the theorem namely

every a metric space can be a complete it.

So,  there  is  an  abstract  theorem in  metric  spaces  that  if  every  metric  space  can  be

completed. for example, the you look at the set of rational numbers that is not complete

under the usual distance of absolute absolute value of the distance and it is completion is

the real numbers and that is the important property of real numbers that it is complete

under that metric.

So, similarly rab under the l 1 metric is not complete, and there is a abstract theorem that

rab can be completed it can be put inside a complete metrics space what we are going to

show is that that completion is nothing, but l 1 of ab. So, we are going to prove that l 1 of



ab the space of all Lebasque integrable functions on ab can be realized as the completion

of the space rab under the l 1 metric and this will be doing in 2 steps one. 
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Who will show that in the l 1 metric the space l 1 ab is complete. that is one and it to be a

completion of rab will show that rab sits inside l 1 of ab as dense sub set. So, rab sits

inside l 1 of ab as dense sub set in the l 1 metric and l 1 is complete. So, that will show

that l 1 of ab is a realization of the completion of the space rab like rationales are dense

in the real line re reals den real are the field of real number is complete that. So, I say

that real number is the completion of the field of rational numbers.

So, in the similar way we want to prove that l 1 of ab is the completion of the space of

rab. so; that means, we want to prove that l 1 ab in the l 1 metric is complete and rab is

dense in  it.  So,  the  completion  at  part  is  called  riesz  Fischer  theorem.  So,  the riesz

Fischer theorem says that l 1 of ab is a complete metric space in the l 1 metric. So, I let

us look at a proof of this. So, the proof, that to prove that it is a complete metric space

what we have to show we have to show that every Cauchy sequence fn in l 1 of ab

converges to a value in l 1 of ab every Cauchy sequence in l 1 of ab is convergent and

convergent to a point in l 1 of ab. So, that is what we have to show.

So, for that. So, let I will to show that. So, this is what we have to show.
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 that there exist some function f in l 1 of ab say that fn minus f l 1 norm converges to 0 as

n goes to infinity. So, this to prove this fact here is an observation what we will show is it

is enough to show that there exists a subsequence of fn which is convergent in l 1 norm.

So, what will show is to you show that fn is convergent in lone metric it is enough fn is

Cauchy sequence to show that a Cauchy sequence is convergent, it is enough to show

that there exist a subsequence of the sequence Cauchy sequence which is convergent that

will prove that the sequence is a convergent. So, to do that. So, we have to produce a

subsequence of fn which is convergent to a function in l 1.

So, let us look at the first step of our construction to construct that subsequence we are

going to use the cauchyness of cauchyness of the sequence fn. So, fn is Cauchy. So, the

first  step is that  saying that the sequence fn is Cauchy implies,  that I  can pick up a

subsequence fnk of fn says that the norm of fn minus fn ks is less than 1 or 2 to the

power k for all n bigger than or equal to nk.

So, to do that we start with. So, what is cauchyness means. So, saying that the sequence

fn.
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Is Cauchy saying that the sequence fn is Cauchy; that means, it  is same as for every

epsilon bigger than 0, there exist some stage and not such that norm of fn minus fm is

less  than  epsilon  for  every  n  and  m greater  than  or  equal  to  n  naught.  So,  that  is

cauchyness.

So, to our construction. So, so start. So, take epsilon equal to 1. and find n 1 such that

norm of fn minus fm is less than epsilon equal to 1 for every n and m bigger than n 1. So,

in particular when m is equal to n 1 that will give me. So, that is fn minus fn 1 will be

less than one for every n bigger than or equal to n 1. So, that is the first stage ok.

So, now, suppose in. So, suppose n 1 less than n 2 less than nk have been constructed

have been found. So, now, use cauchyness. So, find nk such that. So, how do I find nk. 
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So, I will find nk such that norm of fn minus fm will be less than 1 over 2 to the power k

for every n and m less than n and m bigger than or equal to find nk plus 1. So, there a

next one you have to construct nk plus 1. So, I will find that nk plus 1 such that nk plus 1

is greater than mk and this property holds. So, then for m equal to nk plus 1, I will have

fn minus fn k plus 1 will be less than 1 over 2 to the power. So, I i think put it to k plus 1

also that does not matter k plus 1 for every n bigger than or equal to n k plus 1.

So, by induction there exist n 1 less than n 2 less than nk less than. So, on such that norm

of fn minus fn k is less than 1 over 2 to the power k for every n bigger than or equal to

nk. So, that is step one we do that. So, once that is done we go to step 2.
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And the  step  2  is  showing that  this  subsequence,  that  we have  constructed  has  the

property that the some of the l 1 norms of fn 1 plus the l 1 norm of one to infinity of this

is finite. So, that the sums of the l 1 norms of the fn 1 plus the l 1 norms of fn 1 plus the l

1 norms of fnj plus 1 minus fnj j one to infinity that is all finite and that term is that

follows from the effect that just know we looked at this so; that means, norm of fn k plus

1 minus fnk is less than 1 over 2 to the power k.

So, if especially is n to be equal to nk plus 1 then I have I have I have this property for

every k. So, that implies that if I look at the summation. So, norm of fn 1 plus sigma

norm of fnk plus 1 minus fnk k equal to 1 to infinity will be less than or equal to norm of

fn one plus sigma 1 to infinity 1 over 2 to the power j and that is finite. So, that will

prove that the required property step 2 namely sums of norms of this quantities fn one

and this is finite  once that we we have that,  now I can apply my series from of the

Lebasque dominated convergence theorem.

So, as a step 3 as a next step, I want to conclude that if I look at the corresponding

functions fn one x plus summation j one to infinity fnj plus 1 x minus fnjx then this

series is convergent almost everywhere. So, that is preciously follows from the series

from of the Lebasque dominated convergence theorem. So, if I look at this series then I

know that l 1 norms of this series is finite. So, that is preciously the perfect situation

where the series from of the Lebasque dominated convergence theorem applies and says



that this functions they must this series must converge almost everywhere. So, this sum

must exist almost everywhere and if you denote the sum by f of x then f of x equal to this

exist almost everywhere. 
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and it also says that that  function is actually a integrable function and integral of f is

equal to integral of fn 1 plus integral of the sums of the corresponding series. So, this

integrals of f is equal to integral of fn 1 plus this series.

So, we are look at this function f and now it is only to claim that the difference f minus

fnj goes to 0 that thus effects the limit of that subsequence. So, let us look at. 
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So, will note that if you look at f minus fnj that is preciously equal to summation j equal

to k equal to j sorry let me nj so; that means, k equal to nj plus 1 of f nk minus fnk minus

1 1. So, the difference between f and fnj is nothing, but the tail of the series with the

terms of fnk minus fnk minus 1.

So, norm of f minus fnj l 1 norm is going to be less than or equal to summation norm of

fn k minus fn k minus 1 from k, from the stage nj plus 1 onwards and that is the tail of

the convergent series geometric series 1 over 2 to the power j. So, that goes to 0 as j goes

to infinity. So, that will complete the proof that hence the f minus fnj goes to 0 as j goes

to infinity. So, that will prove that the subsequence fnj is convergent.

So, let us just go through go back to the proof once again basically the proof requires one

observation  namely  to  show that  a  sequence  a  Cauchy sequence  is  convergent.  it  is

enough to produce a subsequence which is convergent and that subsequence is produce

in such a way that by using the cauchyness we produce or subsequence with the property

that the norms of the consecutive terms of that subsequence are less than 1 over 2 to the

power  j.  once  that  is  done  we  apply  the  series  form  of  the  Lebasque  dominated

convergence to conclude that the sum of fn one x plus summation fnj plus 1 x minus fnj

that exist almost everywhere that is a integrable function and the integrals converge and

once we have that it is obvious that norm of f minus fnj goes to 0, because once we



subtract that the remaining thing is the tail of the series 1 over the 2 to the power j and

that must go to 0.

So, with that  we prove the riesz Fischer  theorem. So, today we analyze  2 important

things namely one that the space of Riemann integrable functions is inside the space of

Lebasque integrable functions Lebasque integrable on the interval ab and the notion of

Lebasque integral extends the notion of Riemann integrable. So, that was one property

and  the  second  property  you  have  observed  that  the  space  of  Lebasque  integrable

functions on the interval ab under the l 1 metric is a complete metric space. So, and we

will con continue this analysis tomorrow. And we will show that the space of Riemann

integrable functions which is inside the space of Lebasque integrable functions sits inside

as a dense subset hence that will prove that l 1 of ab is the completion of the space of

Riemann integrable functions.

Thank you.


