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Lecture - 22 A
Lebesgue Integral and it is Properties

Welcome to lecture number 22 on measure and integration. If you recall in the previous

lecture we had started looking at the properties of Levesque measure and Lebesgue of

Lebesgue integrable functions. And we started looking at analyzing when does a function

which is Lévesque integrable on the interval a b and it is relation with Riemann integral

of the functions on the interval a b. So, let us we had starting looking at the proof of the

theorem namely that if f is a function defined on a interval a b to R which is Riemann

integrable, then we wanted to show that it is also Lévesque integrable. And Riemann

integral is same as the Levesque integral.

So, we will continue the proof of that theorem, and then go on to analyze some more

properties of the space of Lévesque integrable functions on the interval a b. So, today’s

lecture is going to be mainly concerned with Levesque integral and it is properties.
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So, the theorem we wanted to prove was that if f is a function define on a interval a b to

R and it  is  Riemann integrable,  then it  is  also Levesque integrable and the Riemann

integral of the function is same as it is Levesque integral.
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So, to prove this theorem we started with those idea that since f is Riemann integrable,

there exist sequences psi n and phi n of step functions on the interval a b, such that this

sequence  psi  n  is  monotonically  increasing.  And is  sequence  phi  n  is  monotonically

decreasing. And the function f is between these 2 sequences phi n and psi n for all points

x belonging to a b, and the Riemann integral of psi n’s converges to the same value as the

Riemann Riemann integral of f and that is the same as the limit of the integrals Riemann

integrals of the step function phi n.

So, let us recall this steps which we had proved last time. So, what we are given is f is a

function defined on a interval a b to R, and f is Riemann integrable.
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So,  what  does  the  Riemann  integrability  imply?  The  Riemann  integrability  of  the

function implies the following, namely there exist a sequence P n of refinement partitions

of the interval a b such that the norm of these partitions goes to 0, and the upper sums of

f with respect to these partitions that decreases and the upper sums and the lower sums of

f with respect to P n's increases and the common value is the integral.

So, limit n going to infinity of upper sums is same as integral Riemann integral of f, and

that is same as the limit of the lower sums. So, this is because f is Riemann integrable.

Now let  us see what  are  the upper sums, and what are the lower sums, we need to

analyze them a straightly more carefully to look at. So, this is let us draw a picture of the

function say the function look like this. So, this is a and this is b and we get the partition.

So, with respect to a partition; so, let us say this is the general interval say x i minus 1

and x i. So, in this interval look at what is the smallest value of the function. So, what is

the smallest value of the function? That is this, so look at this height. And look at the

largest  value  of  the  function  in  that  interval.  So,  largest  value  of  the  function  is

somewhere here.  So, look at  that height.  So,  lower sums consist  of the areas of this

rectangle with height as the blue line. And the upper sums consist of the sums of all the

areas which are the green lines.



So, mathematically what this means is the following. So, let  us write mathematically

what is means. So, mathematically these things mean the following namely. So, look at

considering the function. So, let us write. So, consider let us define.
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Define, So let us p is the partition say P n is the partition which looks like a equal to x 0

less than xi minus 1 less than xi, xn equal to b. So, let us say that is the partition. So,

define let us say M 1 to be the supremum of the function fx x belonging to a that is less

than or equal to x 1, x 1 and let us write mk to be the supremum of the function in the

general interval. So, f x for x between xi minus 1 and xi. So, keep in mind here I am

taking  left  open and right  close  here  at  the  end point  is  both  sides  close.  So,  these

intervals are disjoint intervals.

So, what I am doing is in the first part I am looking at this then I am looking at left open

right close left open right close left open right close. So, I am partitioning the interval a b

according to the partition points P n and then looking at the supremums in the respective

intervals. Similarly let us write mk to be equal to infimum of fx in x xi minus 1 less than

or equal to xi and M 1 to be the infimum in the first interval. So, that is fx x in x 0 x 1.

So, what is this value? This M 1 and mks are corresponding to the height which is the

green line. So, that is the maximum value or the function in the interval xi minus 1 to xi

and the blue ones correspond to small mks.



So, once So, we had done this mathematically let us define the required functions. So, let

us define phi n is the function which is summation mi indicator function of xi minus 1 to

xi i equal to 2 to n. And in the first one So, let us put that value as M 1 the indicator

function of a x 1. And similarly let us write psi n to be sigma i equal to 2 to n capital Mi

the maximum value in the interval xi minus 1 to xi. And capital M 1 in the first intervals.

So, that is indicator function of a 2 x 1.

So, these are the functions we defined. So, they are corresponding to So, the function

which is phi n small phi n it will look like the minimum values like this, and it will look

like So, it will look like this. And the capital then psi n's they will look maximum values

look like this, and look like this and look like this.

So, quite clearly they are this functions phi n and psi n are step functions, and phi n of x

is less than or equal to f of x and less than or equal to psi n of x. So, as a first step the

Riemann integrability  of the function f  over  the interval  a  b  gives  us a  sequence of

functions phi n and psi n, where each phi n is a step function each psi n is a step function

and phi n is less than or equal to f of x is less than or equal to psi n of x. And since we

our  requirement  was  that  Riemann  integrability  implies  that  is  a  sequence  P  n  of

partitions is a sequence of refinement partitions. So, that implies that the sequence psi n

will be a decreasing sequence and phi n will be an increasing sequence.

So, let us write that observation namely that so, we have phi n's.
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So, each phi n psi n is a step function phi n's are increasing and psi n's are decreasing.

And moreover further let us look at the Riemann integral of the function phi n x dx a to

b. So, because phi n is constant on each sub interval of the partition this is nothing but

equal to M 1 times the length of the first interval. So, that is x 1 minus a plus the sums of

those rectangles. So, that is small mk times xk minus xk minus 1 k equal to 1 to n. And

similarly the Riemann integral of the can psi n x dx is equal to capital M 1 in the first

interval times the width of the interval that is x 1 minus a plus k equal to 1 to n the areas

of the other rectangles. So, that is capital Mk times xk minus xk minus 1, right.

So, those are the Riemann integrals and by the definition of the upper and the lower sums

this is precisely the lower sum of f with respect to P n and this is precisely the upper sum

of  the  function  f  with  respect  to  the  partition  P n.  And  saying  that  the  function  is

Riemann integrable implies that the upper sums and the lower sums converge to the same

value. So, this and the Riemann integrability implies that the Riemann integral a to b of

phi n x dx limit n going to infinity is same as the Riemann integral a to b fx dx and that is

same as the lebesgue same as the Riemann a limit of the upper sums. So, that is limit n

going to infinity the Riemann integral a to b of psi n x dx.

So, that proves our first step. So, as a consequence of the Riemann integrability of the

function f we have constructed 2 sequences of step functions psi n and phi n, where psi n

is monotonically increasing and phi n is monotonically decreasing. And limit are both the

integrals of both of them converge to the given integral of f. Now let us observe at this

stage. So, in some sense the step functions and the Riemann integrals are the building

blocks for the Riemann integral.
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Now, let us observe that the lower sum of the function f with respect to the partition

which was the Riemann sum, which was the Riemann integral of phi n is also nothing

but the Lévesque integral of the function phi n with respect to the Lévesque integral.

Because this is this function phi n is a simple function simple measurable function and it

is integral is nothing but this integral. So, the observation is that for every n integral a to

b of phi n x dx the Riemann integral is same as the Lévesque integral of the function phi

n with respect to the Lévesque integral over the interval a b.
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And this observation is simply by the fact that phi n is a step function. So, hence it is a

simple  measurable  function  that  is  the  integral  is  nothing  but  the  value  times  the

Lévesque measure of the portion on which that value is taken, and that bring here sub

intervals. So, it is same as the Riemann integral. And similarly the Riemann integral a to

b of psi n x dx is equal to integral over a b of psi n d lambda. So, this is the observation

which is going to play a important role for us.

So now let us define let us consider the because we have got the observation that the

function fn the function phi n is always dominated by fx is less than or equal to psi n. So,

let us look at the function psi n minus phi n. So, look at the function. So, consider the

sequence psi n minus phi n. So, look at the sequence of these step functions. These are

step functions as well as they are simple measurable functions and they are non negative.

So, they are non negative simple measurable functions and by Fatou’s lemma. So, we are

going to apply Fatou’s lemma to this. So, this consider the sequence and apply Fatou’s

lemma. So, what will that give me? So, that will give me that limit inferior of psi n minus

phi n d lambda limit n going to infinity integral over a b.

So, the Lévesque integral of the limit inferior is less than or equal to limit inferior of the

integral psi n minus phi n d lambda. So, that is by Fatou’s lemma, but let us observe here

that integral of psi n over a b minus integral of phi n over a b, the limit inferior of that is

equal to 0, because integrals the Levesque integrals of psi n are same as the Riemann

integrals of psi n and Levesque integrals of phi n are same as the Riemann integrals of

phi n and those Riemann integrals converge to the Riemann integral of f. So, this right

hand side is equal to. So, this is equal to 0. So that means, that the limit inferior of psi n

minus phi n that function is a non negative function and it is integral Lévesque integral is

equal to 0. So, that we know implies that the function must be 0 almost everywhere.
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So, this implies that limit inferior of the sequence which is psi n minus phi n x must be

equal  to 0 almost  everywhere x.  But we know that  psi  n's  are  increasing psi  n's  are

decreasing and psi n's are increasing. So, this limit inferior exists that is that is. So, that

implies that limit n going to infinity of psi n's is equal to limit n going to infinity of phi n

x almost everywhere x, but we know since f of x is between phi n and psi n of x this

implies along with the earlier effect this implies that limit n going to infinity of psi n x

must be actually equal to f of x actually equal to limit n going to infinity of psi n of phi n

of x for almost all x.

So, this must happen, but that implies because each psi n is a measurable function each

phi n is a measurable function this implies f is a measurable. But recall f was Riemann

integrable function, so obviously, it is a bounded function. So, implies that f is Lévesque

integrable  because  f  bounded.  So,  by  boundedness  of  f  every  bounded  measurable

function and all this is define on a b which is a finite measure space. So, that must be

integrable that we had observed earlier. So, f is Riemann integrable.

So, only we have to prove now; so, claim. So, that integral fd lambda over a b is equal to

integral a to b of fx dx. So, this is the only thing left to be shown. So, we have what we

have shown till now is f is Lévesque integrable. So, this integral exist and now let us

observe one thing not only f is Lévesque integrable it is a limit of a sequence of functions

phi n's phi n's converge to f of x. So, the sequence phi n is converge into f of x. And psi



n's are decrease into f of x. So, whichever fact we require you can use. So, let use the fact

that psi n's are limit of psi n's converge to f of x they are decreasing and each psi n is a

integrable  function.  So,  we  can  apply  Lévesque  dominated  convergence  theorem  to

conclude; so, by dominated convergence theorem.
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So, since psi n x converge is to f of x almost everywhere x and psi n's are decreasing and

integrable  psi  n's  decreasing  psi  n's  integrable.  So,  implies  by  Lévesque  dominated

convergence theorem that integral of f d lambda over a b must be equal to limit n going

to infinity of the labesque integral of psi n d lambda. So, that I end that is the observation

of a already made that the Labesque integral of the step function psi n is same as the

Riemann integral. So, n going to infinity. So, that is a to b of psi n x dx.

And this Riemann integral we have observed is the upper sum and which limit is equal to

So, this is the limit  of the upper sums of f with respect to P n and that converge to

integral the a to b fx the dx. So, that will prove that integral Labesque integral of f is

same as the Riemann integral of f over d lambda. So, that proves the theorem. So, let us

go back and recall the proof the what are the first step as a first step in the proof, using

the Riemann integrability of the function we construct 2 sequences of step functions phi

n and psi n. So, that f is trapped in between them and the upper sums are nothing but the

upper sums are nothing but the Riemann integrals of phi n's of psi n's and the lower,

lower sums are nothing but the phi n's So that means, Riemann integral of phi n converge



into the Riemann integral of f and which is also equal to So, here is a equality sin equal

to the Riemann integral of phi n.

So, that is this construction is purely from the fact that fns that the function f is Riemann

integrable. And the second observation is that each phi n and psi n being as step function

is also measurable and Lévesque integrable. And the Lévesque integral of phi n is same

as the  Riemann integral  of  phi  n  and the  Lévesque integral  of  psi  n  is  same as  the

Riemann integral of psi n. So, that is the second observation we will break. So, these 2

integrals Riemann integrals of the step functions are same as the Lévesque integrals.

And now because of the earlier consequence that the Riemann integrals of phi n's and psi

n's converge to the Riemann integral of f look at the difference phi n minus psi n.
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So, look at that sequence of measurable functions phi n minus psi n that is a measurable

non negative measurable function, and an application of Fatou’s lemma I will give us

that this psi n's and phi n's both must converge to the same value and that is f of x almost

everywhere. So, that will imply that f is measurable and being a bounded measurable

function  on  a  finite  measure  space  it  becomes  integrable.  And  now this  psi  n's  are

decrease into f of x. So, an application or Lévesque dominant it convergence theorem

gives that the Riemann integral of f is same as the limits of the Riemann integrals of psi

n's which are equal to the Lévesque integrals of psi n and that dominated convergence

theorem gives you that is the Lévesque integral of f over a b.



So, that proves the theorem a completely namely. So, this is a the step we wanted to this

was the beginning of our lectures. Namely we wanted to say that to remove the defects of

to  remove the  defects  of  Riemann integral  namely, that  the  fundamental  theorem of

calculus may not hold and that the space of Riemann integrable functions may not be

complete under what is called the l one matrix we wanted to extend that the notion of

integral from Riemann integrable function to a bigger class.

So, we have constructed here a class of functions on a b which are called the Lévesque

integrable functions on a b and we have shown that if the class of Riemann integrable

functions is a subset of the class of Levesque integrable functions. And the notion of

Levesque integral extends the notion of Riemann integral beyond the class of Riemann

integrable  functions.  So,  that  was  there  is  a  first  step  in  our  extention  theory.  So,

Levesque integral is an extension of the Riemann integral.


