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So, let us see how the simple function technique is used to prove this result.
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So, let us start. So, we want to show that for every g belonging to L 1 of X, S, nu integral

of g d nu can be represented as integral f g d mu. So, where recall, we defined nu of E to

be equal to integral of f d mu over E. So, this is the, this is the property we want to prove.

So, this is the property star we want to prove for every function g.

So, as we said let us first. So, check this property. So, step 1, let us take g is g is a L 1

function. Let us say g is a function which is indicator function of E. Let us take g as the

indicator function of E, E belonging to S. In that case, the integral g d mu, the left hand

side is  nothing, but nu of E right  because g is  this  is  the indicator  function so,  this

integral of nu of E which by definition is equal to integral chi E of f d mu. And So, chi is

g. So, this is equal to integral g f d mu.

So, what it  says, it  say that the required property star holds, when g is the indicator

function. And now let us take a nonnegative simple function. So, that is step 2: Let us

take g is sigma a i chi of E i, i equal to sum 1 to n; where E i is belong to S. And our

claim is that this property holds for this g also. So, we are saying that next step is to

verify that the required property.
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So, integral of g d nu by definition is equal to integral of sigma a i indicator function of E

i d nu and what is that; by inherit property of the integral it is sigma i equal to 1 to n of a

i, that is scalar times nu of E i, because integral of the indicator function is the measure.



So, that is equal to sigma i equal to 1 to n, a i and nu of a i by definition is integral chi E i

of f d mu right that is the definition of nu of E i is this.

So, which I can write it again as sigma i equal to 1 to n of a i we can take it out. So, let

us. So, this is and again by the linearity property of that is integral a i chi E i times f d

mu, but this is nothing, but my function g. So, this is integral of g f d mu. So, what we

are saying, that if g is summation a i chi E i, then using linearity property this is same as

integral goes in. So, that is a i integral of the indicator function of E i that is nu of E i.

And nu of E i by definition is integral over E i of f d mu. And again using linearity

property of the integral I can shift it outside. So, it is integral of summation a i chi E i

times f d mu which is g. So, it says. So, the required property holds. So, star holds, for

nonnegative simple functions g. So, that is what I said simple function technique. And

now  let  us  try  to  prove  it,  that  this  property  also  holds,  when  g  is  a  nonnegative

measurable function. So, let us look at now g.
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So, let g on X to be measurable. Then we know by the property of measurable functions

implies; there exist a sequence S n of nonnegative there is sequence S n of nonnegative

simple measurable functions. Functions, such that S n increases to the function g, so then

by Lebesgue by Modern Convergence theorem integral of g d nu with respect to nu must

be  equal  to  limit,  n  going to  infinity  integral  s  n  d  nu,  but  for  nonnegative  simple

functions just now we proved this the star holds; that means, this can be written as limit.



So, by step 2: I can write this as integral of s n times f d mu. So, with the integration of a

nonnegative simple measurable function with respect to nu, can be converted into the

nonnegative simple measurable function multiplied by f d mu. And now at this stage, we

observe that if s n is increasing to g, then s n time’s f will be increasing to g time’s f.

And all are nonnegative simple measurable all are nonnegative measurable functions. So,

once again Monotone Convergence theorem is applicable, and this limit is nothing, but

integral of g f d mu that is; so, once again we have used. So, this step this step was by

our step 2 that the property holds for non negative simple measurable functions. Integral

with respect to nu is integral with respect to mu of the product function. And now once

again we are applying Monotone Convergence theorem. So, first integral of g is equal to

limit of integral s n s d nu by Monotone Convergence theorem, and now by our earlier

step this is equal to integral of s n f d mu again by Monotone Convergence theorem it

goes  back  so;  that  means,  this  implies  that  star  holds  for  nonnegative  measurable

functions. And now let us come to the last part namely:

(Refer Slide Time: 08:22)

So, let us final step 3: is let g belong to L 1 X, S, nu. G be a integral function. Now then

what is g equal to, g plus minus g minus, where g plus is a nonnegative measurable

function g minus is a non negative measurable function and by step 2. So, by step 2: we

know that integral g plus d mu is equal to integral of g plus sorry d nu. So, let me write it

again integral g plus d nu is equal to integral g plus of f d mu and integral of g minus d



nu is equal to integral g minus f d mu. So, that is by step 2. And now because g is L one,

so, that implies g is equal to g plus g minus. So, g plus is in L 1 of nu and g minus also

belongs to L 1 of nu right.

A function g is integrable, if and only if; its positive part and negative parts are integrable

so; that means, this quantities right they are all finite, these are all finite quantities so;

that means, what and f is nonnegative. So, that implies integral of g f d mu is equal to

integral of g plus fd mu minus integral g minus f d mu. By definition of the positive part

and the negative part of the function g f f is nonnegative. So, the positive part of the

function g f is same as g plus times f and the negative part is nothing, but g minus f. And

now both of these are finite quantities so; that means, implies that g f is L 1 and by these

two this is same as integral of g d nu. So for a so the step 3: for a g which is integrable,

we have deduced that this property is true. So, this is step 3. So, this is what I called the

simple function technique. So, let me go back and show you once again, what we have

done? So, we wanted to show that, so this is property star, we wanted to show for every

function g which is L 1. 

First  step  is,  so  this  is  my step  1:  that  look  at  the  functions  g  which  are  indicator

functions.  So,  I  want  to  verify  this  for  the  indicator  function,  g  to  be  the  indicator

function. So when g is the indicator function, so this left hand side is integral of over E

of  the  constant  function  1.  So,  this  is  equal  to  integral  d  nu  is  nu  of  E,  which  by

definition is integral f over E, which I can write as integral f E; so, that is true. So, step 1

is to verify the required thing holds for characteristic function. And step 2: by using the

property that  the integral  is  linear, we show it  is  true for every non negative  simple

functions. 

So, take g a nonnegative simple measurable function and apply. So, g is equal to integral

of nonnegative a i indicator function a i and interchange and so, it  required property

holds.  So,  the  step 2 as  that  the  required  property  holds  for  nonnegative  simple  for

nonnegative simple measurable functions  and then using an application of Monotone

Convergence theorem so that is step 3. That if g is a nonnegative measurable function

then we know it is a limit of nonnegative simple measurable functions increasing limit.

So, an application of Monotone Convergence theorem together with the earlier step gives

us that integral of g d nu is equal to integral of g f d mu. 



So, that is the next step to show that it holds for nonnegative measurable functions. And

once that is done, the final step that it holds for all integrable functions is via; splitting

the function g into the positive part minus the negative part. And g integrable means both

are integrable and for each one of them, the required claim star holds. So, by putting

them together we get that the required claim holds property star holds for all functions g.

So, which are L 1. So, this is what I normally call as the simple function technique. So,

while proving results, about integrable functions one uses quite often the simple function

technique. 

And while proving some properties about subsets of sets recall; we had the sigma algebra

Monotone class theorem technique. So, for proving properties about sets, one uses the

Monotone class sigma algebra, Monotone class technique and for proving results about

integrals one normally uses what is called the simple function technique.

So, with this we have defined and proved general properties about integral of functions

on sigma finite measure spaces. Now we will try we will specialize this property this

construction when X is real line. So we want to specialize this thing, for the real line. So,

let us see what we get.

(Refer Slide Time: 14:39)

So, while you looking at the special case, when X is real line. The sigma algebra is L that

of  Lebesgue  measurable  sets  and  the  measure  mu will  be  the  lambda  the  Lebesgue

measure. So, we will be working with the measure space X S mu which is same as real



line Lebesgue measurable sets and Lebesgue measure. So, the spaces of all integrable

functions on this measure space are L and lambda is called the space of all Lebesgue

integrable functions and is also denoted by L 1 of R or L 1 of lambda. So, this is the

space of all Lebesgue integrable functions.

So, we want to study, this space of Lebesgue integrable functions in some more detail.

(Refer Slide Time: 15:34)

So, let us first agree to call integral f d lambda to be the Lebesgue integral of the function

f. So whenever, f is integrable or nonnegative integrable f d lambda will be called the

Lebesgue integral of f. Sometimes we have to look at functions which are defined on

subsets of E. So, for any subset E, which is Lebesgue measurable, L 1 of E will denote

the space of all integrable functions on the measure space E, so underlying set is E, L

intersection E is the collection of all Lebesgue measurable sets inside E and lambda is

the  Lebesgue  measure  restricted  to  subsets  of  L  intersection  the  sigma  algebra  L

intersection E. 

A of particular interest,  for the time being is going to be, the set when E is a closed

bounded interval a, b. So, we will start looking at the space L 1 of a, b that is the space of

all Lebesgue integrable functions defined on the interval close bonded interval a, b and

we also have the space r a, b namely the space of all Riemann integrable functions on a

b.  So, we want to compare these two spaces on one hand we have got the space of

Lebesgue integrable functions on a, b. On the other hand, we have got the space of a



Riemann integrable functions on a,  b,  and we want to see the relation or establish a

relationship between the two and that was one of the starting points for our discussion of

this  subject namely;  the space of Riemann integrable functions had some difficulties,

some problems, some drawbacks, and for which we wanted to extend the notion to a

larger class and this is the larger class L 1 of a, b. 

So, what we are going to show is R a, b the space of all Riemann integrable functions is a

subset  of  L 1  of  a,  b  and the  notion  of  Riemann  integral  is  same as  the  notion  of

Lebesgue  integral  for  Riemann  integrable  functions.  So,  that  is  called  the  relation

between the Riemann integral and the Lebesgue integral.
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So, to be more specific we want to prove the following theorem, namely; if f is defined

on a close bounded interval a, b is Riemann integrable function, then f is also Lebesgue

integrable and the Lebesgue integrable is same as the Riemann integral of the function f.

So, this is what we wanted want to prove.

So, let us start looking at, how do we prove this? So, the proof of the theorem
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So, we are given that the function f belongs to R a, b, it is a Riemann integrable function;

that means, so, let us recall how is the Riemann integral of a function define. It is defined

via; limits of upper sums and lower sums of partitions. So, implies there exist a sequence

P n  of  refinement  partitions  with  norm of  P n  going  to  zero  as  n  goes  to  infinity,

partitions n going to infinity with the upper sums of P ns with respect to f, limit of that is

same as integral the Riemann integral of f is same as the limit of the lower sums L P n of

f. So, that is the meaning of saying that a function f is Riemann integrable.

So, we can find, Riemann integrable implies there exists a sequence of partitions P n,

which are refinement partitions. Refinement means P n plus 1 is obtained from P n by

adding one more point. And norm of these partitions the maximum length of the sub

intervals goes to 0. And integrability means that the upper sums and the lower sums, both

converge to the same value and that is the Riemann integral of the function f. So, this is

this is the property of saying that f is Riemann integrable.

So, now from here, let us look at what is U P n, f upper sum. So, let us write down the

partition P n as something. So, let us say P n looks like a. So, interval is a to b, so a the

point x naught less than x 1 less than x n which is equal to b. So, let us say that is the

partition P n. So, in the picture it will look like, here is a, here is b. So, this is the x 0, this

is x n, and here is x 1, x 2 and so on. So, to construct the upper sums, what one does? To



construct the upper sums, one looks at the maximum value of the function in this interval

and the minimum values in this interval.
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So, let us write let us let us write M k to be the maximum value of the function, in the

interval x say x i minus x k. So, let us x k minus 1 to x k. I am just trying to be trying to

make  the  intervals  disjoint.  Maximum  in  this  interval  of  maximum  in  this  interval

maximum of maximum of f of x maximum in of f of x. And similarly M k, let us write it

is a minimum in the interval x k minus 1 to x k of f of x. Only at the end points you have

to make it close, but that is not going to matter much. So, that then we define, what is U

P n, f? that is, essentially looks like summation of the maximum value into the indicator

function  of  that  sub  interval.  And  the  lower  sum with  respect  to  P n,  f  looks  like

summation small m k, the minimum value of the function in that sub interval x k minus 1

and x k.

So, let us let us do one thing, sorry this is upper sums they are not these are not. So, let us

let me I am sorry this is not the upper sum. Let us call this when in the interval x k minus

1 to x k the value is capital M k. Let us call that as, the function phi k and when you are

taking the minimum value in that interval and summing up, let us call that as psi k. So,

these are functions, because they are linear combinations of indicator functions. And the

upper sums and lower sums are nothing, but the upper sum P n, f is nothing, but Riemann

integral a to b of phi k x d x and the lower some P n, f is equal to the integral of Riemann



integral of this function psi k of x d x. That this functions phi k and psi k, which are

linear combinations of indicator functions are in fact, non negative measurable functions.

On the measure space a, b the interval a, b. So, note: so that is the observation that we

should note and then so let us note down.

(Refer Slide Time: 24:35)

Note: phi k and psi k are measurable functions are measurable nonnegative sorry are

simple measurable functions. So that phi k is less than or equal to at every point x is less

than or equal to f of x is less than or equal to psi k of x. And as far as the integral is

concerned, the integral a to b of f x d x is between the upper sum and the lower sum, so

that is the phi k was a maximum sorry this. So, this should be bigger than or equal to like

this, because phi k is taken as the supremum, so this is. So, this is upper sum P k of f and

that is bigger than or equal to the upper sum sorry; bigger than or equal to the lower sum

with respect to P k of f. And in the limit both of them are converging. So, here is the

second observation is that the upper sum with respect to the partition of f is same as, so

what was it. So, that was equal to sigma M k into the length of the interval x k minus x k

minus 1. So, that is the upper sum that is also a Riemann integral.

In fact, this is also equal to so, the length. So, this is the length of so you can write this is

the length. So, M k times length of x k minus 1 and x k, which is same as the Lebesgue

integral of the function phi k d lambda. So, this is, this is the important observation that

we should keep in mind. That the building blocks for Riemann integral which are these



step  functions  are  also  Lebesgue  integrable  and  the  Riemann  integral  of  the  step

functions phi k and psi k are same as the Lebesgue integrals of phi k and psi k. So,

similarly the lower sum P k, f is equal to integral of psi k d lambda. And now essentially

the idea is to put them together. So, because phi k and psi k they are between these two.

So, let us look at integral of. So, look at the sequence.
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So, consider the sequence psi k minus phi k minus psi k. Recall, phi k is bigger than f x

is less than psi k. So, phi k minus psi k is nonnegative for every k and saying that the

upper sums and lower sums converge to the same value is saying that the integral of phi

k minus psi k phi k minus psi k d lambda that goes to 0. So, that goes to 0. So, because

the phi k d lambda is the upper sum, this is the lower sum and that goes to 0.

So, that implies, so that implies that limit so; that means, this implies that the limiting

function f is trapped in between so that means, limit phi k x is equal to limit psi k x

almost everywhere, Why is that? So, that we can reduce from the fact that, applying

fatous lemma, so to reduce this look at the limit inferior of phi k minus psi k, integral d

lambda be less than or equal to limit inferior of integral phi k minus psi k and that is 0.

So, this is 0 so; that means, and this is and so, this says that integral of a nonnegative

function is 0. So, the function must be 0, almost everywhere and that is same as saying

this must be 0, almost everywhere and f is trapped in between. So, that implies that limit



phi k x limit of phi k x is equal to f of x is equal to limit psi k x for almost everywhere x.

So that proves is equal to. 

So, we are falling short of time so; that means that the function f is measurable. So, we

will continue the proof of this tomorrow in the next lecture. So, our aim is to prove that

the space of Riemann integrable functions is inside the space of Lebesgue integrable

functions  and  the  Riemann  integral  is  same  as  the  Lebesgue  integral.  So,  we  will

continue the proof in the next lecture.

Thank you.


