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Lecture – 21A
Dominated Convergence Theorem and Applications

Welcome to lecture 21; on Measure and Integration.  In the previous lecture,  we had

started  looking at  the  properties  of  sequences  of  integrable  functions  and we started

proving an important theorem called Lebesgue dominated convergence theorem. Let us

continue  looking  at  that  and  after  that  we  will  start  looking  at  the  special  case  of

integration on the real line and that will give us the notion of Legbsgue integral.
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So,  let  us  recall  what  we had started  proving namely  dominated  converges  theorem

which says that if f n is a sequence of measurable functions; such that there exists a

function g belonging to l  1;  such that all  the f  n s  are dominated by this  integrable

function  g;  almost  everywhere x for all  n.  And if  f  n converges  to  f;  then the limit

function is integrable and integral of f is nothing, but the limit of integrals of f n’s. 

So, the theorem basically says that if f n is a sequence of measurable functions; all of

them dominated by a single integrable function g, then all the f n’s become integrable of

course, and if f n’s converges to f; then f is integrable and integral of f is nothing, but the

limit of integrals of f n’s. Now, we had proved this theorem in this particular case, when



instead of this almost everywhere that mod f n’s are dominated by g everywhere and f n’s

converge to f everywhere.

So, to extend this case to almost everywhere; we have to do on minor modifications.
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So, let us look at. let us define the set N to be the set of all x belonging to X; where mod

f n x is not dominated by g. So, g of x or union the set of all those points x belonging to

X; such that f n x, does not converge to the function f of x; so, on N complement; we

have f n x is less than g x and f n x converges to f of x. So, for every x belonging to N

complement and mu of the set n is equal to 0. Because we are saying that this mod f n x

is less than g x almost everywhere. And f n x converges to f of x almost everywhere; so,

the set where it does not hold; there is a set n and that set has n has got measure 0.

So, now let us consider the sequence; indicator function of N complement times; f n. So,

this  is  a  sequence  of  functions  which  are  dominated  by;  so,  this  is  a  sequence  of

functions for n bigger than or equal to 1 and they satisfy the property. So, namely this the

indicator function of N compliment f n mod of that is less than g; for all x everywhere.

And the functions converged to the indicator function of N compliment f. 
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So, by our earlier case; what we get is the following namely that indicator function of N

complement  times f  is  L 1 is  integrable  and integral  of f  n limit  n going to infinity

indicator  function  of  N compliment  times  f  n;  the  integral  of  that  converges  to  the

integral of indicator function of N compliment times f. So, that is by the earlier case

when everything is true for all points. So that means, so this is same; but note that mu of

N is equal to 0. 

So, that implies that is the integral of f over N d mu is equal to 0 and we already know

that on N complement; f is integrable. So, that together with this fact implies integral of

mod integral of mod f d mu is finite; implying that f belongs to l 1. And this equation

which said that integral of a f n over N complement converges to integral of f over N

complement and mu of N being 0; together gives us the condition that integral of f n d

mu converges to integral f d mu.

Because integral  of f n d mu is  same as integral  of f n over n plus integral  over N

complement and integral over N compliment converges to integral over N complement

of f and on n both are 0, so this gives us the required result. So, that is how from almost

everywhere conditions are deduced from the fact that something holds everywhere. 

So,  this  dominated  convergence  theorem  holds  for  whenever  the  sequence  f  n  is

dominated  by g and f  n  converges  to  f  almost  everywhere.  Then f  limit  function  is



integrable and integral  f converges to integral  of f n. So, as I said this is one of the

important theorems which helps us to interchange; the limit and the integral sign.

Let us look at some more minor modifications of this theorem; one thing more we can

even reduce that integral of mod f n minus f d mu also converges to 0. 
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So, to deduce that part; we just have to observe that mod f n minus f is less than or equal

to twice of g and mod f n minus f goes to 0. So, again an application of dominated

convergence theorem; dominated convergence theorem which we put just now, implies

that integral of mod f n minus f d mu goes to 0. So, that is a another modification,

another consequence of the dominated convergence theorem.
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Let us prove what I call as the series version of this theorem; namely that if f n is a

sequence of functions which are integrable and integrals of f n summation 1 to infinity.

So, sum of all the integrals f n mod f n’s are finite; then the conclusion is that the series f

n x converges almost everywhere. And if you denote the limit; the sum being f of x, then

that function is integrable and integral f is equal to summation of integral f n’s. 

So, essentially this theorem says that if the summations of mod f n’s are finite; then this

the series f n x is; I guess is convergent almost everywhere and integral of f is equal to

integral of summation of integral f n’s. So, that is again interchange limit essentially. So,

let us see how from dominated convergence theorem; we can get this.
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So,  let  us  define;  to  show that  this  series  is  convergent  almost  everywhere;  we will

actually show that, so we show is absolutely convergent. So, for that let us define say g n

of x to be equal to summation mod f k of x; k going from 1 to n, the partial sums of the

absolute values 1 to n.

So, let  us observe that this sequence g n. So, note g n is a sequence of nonnegative

measurable functions and g n’s are increasing to some function so, that is there going to

increase to k equal to 1 to infinity;  mod of f k of x; let us call that as g x; they are

increasing to the function g of x. So, that implies by monotone convergence theorem; we

have integral of g n; d mu must converge to integral of g d mu. 

But integral of g n d mu; so, that is same as same integral g d mu is equal to limit n going

to infinity of integral g and d mu, but what is integral of g n; g n is sum of absolute

values of f k 1 to n. So, by linearity property this is nothing, but limit of n going to

infinity of summation 1 to n; k equal to 1 to n of integral mod f k; d mu and this limit is

nothing, but 1 to infinity and that is given to be finite. So, let us write that. 
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So, this is equal to summation k equal to 1 to infinity of integral mod f k d mu; which is

given to be finite. So, hence what do we get is thus g is integrable; g belongs to g is a

integrable function. So, saying that g is integrable implies, we call that if a function is

integrable and g is a nonnegative function. So, g of x is finite almost everywhere; that is

nonnegative function which is a integrable function must be finite almost everywhere.

So, we get that g is finite almost everywhere and what is the function g; g is nothing but

the limit of the absolute values of f k x. So; that means, that prove that the series; so,

hence sigma k equal to 1 to infinity mod f k of x is finite almost everywhere x. And once

a series is absolutely convergent; it is also convergent so, that implies that sigma k equal

to 1 to infinity f k x is finite for almost everywhere x.

So, let us denote this limit by f of x; so, this is f of x and so, as observed earlier. So, note;

so f of x, we can write also f of x as the limit n going to infinity of summation k equal to

1 to n; f k x. And if this functions are called as something say phi n; then note that mod

phi n, if this is called as phi n; then what is mod phi n? mod phi n is absolute value of 1

to n f k x; absolute value of that and that is less than or equal to summation 1 to n mode

of f k 1 to n; and that is nothing, but our g n which is less than or equal to g. 

So, these partial sums which we called as phi n’s are all dominated by g and phi n’s

converge to f; so by dominated convergence theorem. So, what we have got is; so, we

have got. 
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So, all the phi n’s are less than or equal to g and phi n’s converge to f almost everywhere.

So, that implies by dominated convergence theorem; that integral of phi n’s d mu must

converge to integral of f d mu. But this is nothing, but this phi n’ this is what we called as

phi n that is summation of 1 to n. So, this is nothing, but summation of 1 to n of integral

k equal to 1 to n of integral f k; d mu must converge to integral f d mu.

And that is same as saying that integral f d mu is equal to summation k equal to 1 to

infinity; integral f k d mu. So, that proves the theorem namely if f k is a sequence of

functions, which are integrable and the sum of the integrals is finite; then the series f n x;

n 1 to infinity itself is convergent almost everywhere and the limit function is integrable

and integral of the limit function is equal to summation of integrals of f n’s. So, this will

referred to as the series version of dominated convergence theorem.
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There  is  another  interpretation  of  the  dominated  convergence  theorem;  when  the

underlying measure space is a finite measure space; then one has that if X S mu is a

finite measure space and f n is a sequence of measurable functions; such that all of them

are dominated by a single constant M; almost everywhere and f n x converges to f of x;

then integral f n s converges to integral f. 

So,  this  is  a  particular  case of dominated  convergence  theorem when the  underlying

measure space is the finite measure space. And the only thing to observe here is that

because let us see how does this follow from; is a dominated convergence theorem. 
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So, we are given that mod f n x is less than or equal to M; for almost everywhere x. So,

now, look at this; so, look at the constant function M. So, look at the function g of X

which is equal to M for every x belonging to X. So, the constant function is measurable;

so, note that g is a nonnegative measurable function because it is constant function note

that. So, its integral g d mu is equal to is equal to integral the constant function M d mu

and that is equal to m times the measure of the whole space x; which is finite.

So,  what  we  are  saying  is  on  finite  measure  spaces  a  constant  function  is  always

integrable. So, implies g is L 1; so, f n x bounded by M. So, that is constant function and

that is a integrable function; once we have that and f n x converges to f of x almost

everywhere. So, now, by dominated convergence theorem is applicable and that implies

integral fd mu is equal to integral f n d mu limit n going to infinity. 

So, the main thing is on finite measure spaces a constant function becomes integrable

because of this reason. So, this is what is called bounded convergence theorem and it is

quite useful; when underlying measure space is a finite measure space. So, let us look at

what we have proved till now; we have looked at the space of integrable functions and

proved  linearity  property  and  an  important  theorem  called  dominated  convergence

theorem. 

So, if you recall for nonnegative measurable functions; we had two theorems one was

monotone convergence theorem namely that was theorem; when f n is a sequence of



nonnegative measurable functions increasing to a function f, then integral of f is equal to

limit  of integrals.  So; that  means,  interchange of limit  and integration is  possible  by

monotone convergence theorem whenever the sequence f n is monotonically increasing

and sequence of nonnegative measurable functions.

The second theorem which involved sequences of measurable functions was again for

nonnegative measurable functions and that was called fatous lemma. So, there we do not

emphasize; we do not require the sequence f n be nonnegative and measurable; we only

want the sequence f n to be a sequence of nonnegative measurable functions; they need

not be increasing. So, for such a sequence we had that integral of the limit inferior of the

sequence f n is less than or equal to limit inferior of the integrals of f n; so, that was

Fatou’s lemma.

And now we have the third theorem; dominated convergence theorem which again helps

you to interchange the notion of integral and the limiting operation under the conditions

that all the f n’s dominated by a single integrable function. 
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So, these are the three important theorem which help us to interchange limit  and the

integral  signs. Let us at  this stage emphasize one more point about this technique of

integration and so, basically for integral; we started with simple functions and then we go

to a nonnegative functions and then we defined it for integrable functions. 



So, this process of step by step defining the integral can be is useful in proving many

results and I call it as the simple function technique. So, this is a technique which is used

very often to prove some results about integrable functions and non negative measurable

functions. So, what is the technique; let me outline that and then I will give a illustration

of this.

(Refer Slide Time: 19:44)

Suppose, you want to show that a certain property, say let us all that property as star

holds for all integrable functions. So, to prove that the property holds for all integrable

function; the technique is as follows basically that show that this property star holds for

all non negative simple measurable functions. 

So, if you want to show a property holds for all integrable functions; first show that it

holds for the class of nonnegative simple measurable functions. And next show that star

holds  for  non  negative  measurable;  integrable  function  by  using  the  fact  that  non

negative measurable functions are limits  of increasing the limit  of simple measurable

functions. So, and use their one use is normally the monotone convergence theorem. So,

using  monotone  convergence  theorem;  one  extends  the  property  star  from  simple

measurable  functions  to  nonnegative  measurable  functions  or  nonnegative  integrable

functions.
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And then keeping in mind that  for a function f  it  can be split  into positive part  and

negative part. So, f can be written as f plus minus f minus and if a property holds for

nonnegative functions. So, about integral; so, f for plus that will hold for f minus that

will hold and then conclude from there that it holds for f also. So, this is what I call as

the simple function technique to prove results about integrable functions. 
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To give a illustration of this; let us look at the following result. Let us take a measurable

space X S mu; which is sigma finite measure space and let us look at a function f which



is integrable on this measure space and is nonnegative. So, we have got a sigma finite

measure space and f is a nonnegative integrable function on this measure space. Let us

define nu of E, for every set in the sigma algebra; let us define nu of e to be integral of fd

mu over the set E integral of f over the set E is denoted by nu of E; for every set e in the

sigma algebra S. Then we had already shown that this nu, the set function nu is in fact, a

finite measure on S. So, this we have already proved.

But what we want to prove now is that further if g is any integrable function within on

the measure space X S nu; this nu is the new measure. So, if g is integrable on X with

respect to nu, then the product function f into g is integrable with respect to mu and this

relation holds integral fd mu. So, integral of f with respect to nu is equal to integral of f

into g with respect to mu. 

So, what we have done is by fixing a function f; which is nonnegative, we have defined a

new measure on the measurable space by nu of e to be equal to integral of efd mu. And

we are saying; if you want to integrate a function with respect to a function g, with

respect  to  this  new measure;  then it  is  same as  integrating  the function;  the product

function f g with respect to the old measure mu.


