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Lecture – 19A
Monotone Convergence Theorem & Fatou's Lemma

Welcome to lecture number 19, on Measure and Integration. In the previous lecture we

had started looking at, the properties of integral for non negative measurable functions.

We had looked at,  the linearity  property of the integral  for non negative measurable

functions, and then we said we will start looking at the limiting properties of a functions,

which are nonnegative measurable, and integrals of them. 
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So, today we will prove some important theorems, we will start with proving what is

called monotone convergence theorem, and then we will prove fatuous lemma, and then

go to define integral for general functions.
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So, let us look at, what is called monotone convergence theorem, monotone convergence

theorem says that let f n be a sequence of functions in class l plus; that means, f n is the

sequence of nonnegative measurable functions, increasing to a function f of x at a brief

point; that means, f of x for every x in x is limit n going to infinity of f n of x. So, we are

given a sequence f n of nonnegative measurable functions, which is increasing and the

limit is f of x, then the claim is the function f belongs to l plus this, we have already

observed and the additional properties that the integral of the limit f d mu is same as limit

of the integrals of f n d mu; that means, whenever a sequence f n of nonnegative of

measurable functions, increases to f then integral of the limit  is equal to limit  of the

integrals. So, this is 1 of the first important theorem, about convergence of sequences of

nonnegative measurable functions and their integrals.
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So, let us prove this property, so we are given f n is a sequence each f n belongs to l plus,

is a nonnegative a measurable function for every n bigger than or equal to 1 so; that

means, that implies there, exist a sequence will denoted by a s n j of functions, n bigger

than or equal to 1 such that s n j are nonnegative measurable simple functions for every n

and for every j and s n j increases to f of, so let us fix notion which 1 we are going to

vary. So, let us say that the upper 1 will be fixed. So, this is going to f n as j goes to

infinity.  So,  for  every  n  fix  s  n  j  is  a  sequence  or  nonnegative  simple  measurable

functions increasing to f n’s, and f n’s they increased to f. So, we want to show we have

already shown, but will show it again that this implies f belongs to l plus is a nonnegative

measurable function, and integral f d mu is equal to limit n going to infinity integral f n d

mu.

So, to prove this we are going to use this sequence s n’s and construct a new sequence of

nonnegative simple measurable functions out of it. So, what will do as the following, so

let us write that for n is equal to 1.
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That s 1 1; s 1 2: s 1 j; s 1 say j this converges to f 1. So, the upper index is going to give

you, so s 2 1, s 2 2, s 2 j, this increase is to f 2, and in geranial we will have s n 1, s n 2, s

n j will increase to f n and so on, and this increases to f.

So, let us observe that as we go from left to right, as we go from left to right, this is

increasing.  So,  everywhere  left  to  right  it  is  increasing  and down to  up that  also is

increasing, so every sequence if you look at them. So, this is the array of nonnegative

simple measurable function, each row is increasing to the function on the right side and

this is increasing upwards. So, let us out of this I am going to define. So, let us look at

the function. 
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So, let me define from this a function define g n to be the function, which is maximum of

s n j j between 1 and n. So, look at so in a sense what way I am doing is in this picture

look at the 1 say let us say here is s 1 n and, here is s 2 n and, here is s n n. So, I look at

this column. So, s 1 we are looking at the column s n 1 s n. So, let us look at this column

say and call that maximum of this to be g n. What is g; so, g n is the so, let me write

again, so g n is the maximum so, define g n equal to maximum of s j n j 1 2 n. 

So,  let  us  observe  that  each  g  n  is  a  maximum  of  nonnegative  simple  measurable

functions. So, each g n is a nonnegative simple measurable function for every n, and g n

is increasing because at the next stage n plus 1. So, all this is going to be bigger the next

stage, if you look at g n plus 1. So, that is going to be s 1 n plus 1, s 2 n plus 1, and so on

s n plus 1 n plus 1 n and s n plus 1 n. So, all this 1 is going to be bigger than everything

on the left hand side, and these are we are looking at the maximum. So, in the maximum

of this is going to be bigger than or equal to maximum of this, because at each the right

inside a function is bigger than the left hand side function. 

So, this is going to give us, that is g n is increasing sequence of functions. Let us write let

g b equal to limit n going to infinity of g n, so g is. So, all these g n’s are increasing and

they are going to increase to some function g. So, what we are going to show is g is equal

to f ok. So, that is what we are going to check. So, let g b equal to, so then clearly by

definition  g  is  a  nonnegative  simple  measurable  function,  because  it  is  a  limit  of



increasing sequence of nonnegative simple measurable functions. So, g belongs to l plus

also.

Let us observe also, each g n is less than or equal to f n, for every n right. So, that is

because say g n is the maximum of this. So, and the maximum of this each 1 of them is

less than f 1 is less than f 2 is less than f n, so the maximum of these g n’s is just going to

be less than or equal to this a f n for every n and f n is increasing to f. So, that will imply

that, so g n is less than or equal to f n for every f and f n is less than or equal to f.
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So, implies that g n is less than or equal to f n, and if less than or equal to f for every n.

So, hence and g n is increase in to g. So, that implies g is less than or equal to f. So, that

is 1 observation that the function g is less than or equal to f, and we claim that the other

way round is also true. So, claim is that f is also less than or equal to g. So, let us note

that for every j between 1 and n if I look at s j n; g n is the maximum of this. So, this is

less than or equal to g n for every n. So, this is less than or equal to g n for every n and j,

j between less than this. If we fix n g n is less than or equal to so, in and this is less than

or equal to g so, s j n is less than or equal to g n, is less than or equal to g, for every j

between 1 and n and for every n. So, let us now fix j and let n go to infinity.

So, as n goes to infinity what happens. So, this converges f n, so note that as n goes to

infinity s j n goes to f j. So, from this and this, these 2 observations s n j is less than or

equal to g, for every so, if we fix j and let n go to infinity then n is crossover j, and s n j



and as n goes to infinity converges to f of g. So, this implies f of g is less than or equal to

g for every j, so this we; so we get. 
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So, implies that f j is less than or equal to g for every j, and fns f j are increasing. So, this

implies that f is also less than or equal to g. So, we have already shown g is less than or

equal to f and now we are saying f is less than or equal to g. So, this implies that f is

equal to g. So hence, 1 observations from here is hence that g belongs to l plus. So, f

belongs to l plus. So, we have once again proved that, if f n are increasing to a function f

and f n’s are nonnegative measurable then f is also nonnegative measurable, and now

note, that integral of f d mu is same as integral of g of d mu, because f is equal to g and

this  is  equal  to  limit  n  going  to  infinity  of  integral  g  and d  mu,  because  g  n’s are

nonnegative a simple measurable increasing to g.

So, by definition this is so, but each g n is less than or equal to f. If you recall so, each g

n is less than or equal to f. So, integral of g n will be less than or equal to integral of f.

So, limit of integral of fns will be less than or equal to integral f.

So, this is less than or equal to integral f d mu, or we can even introduce in between. So,

g n is less than or equal to f n. So, it is less than or equal to limit n going to infinity

integral f d mu, which is less than or equal to integral f d mu. So, what does this imply

integral f d mu is less than, or equal to limit f n integral of f n d mu, and that is less than

or equal to f d mu. So, that implies that integral of f d mu is equal to limit n going to



infinity integral f n d mu. So, that proves the theorem completely integral of f d mu is

equal to limit n going to infinity integral of f n d mu.

So, this is a construction which is quite useful in, so this is the kind of analysis 1 must

carry out. So, let us go through the proof again so we understand, what we are doing

each f j of f n is a measurable function. So, I can look at a sequence s 1 1, s 1 2, s 1 j, s 1

n which is going to increase to f 1, similarly toppers fix is fixed at 2. So, s 2 1, s 2 to 2, s

2 j, s 2 n that increases to f 2 and so on.

So, each row is increasing to the function on the right side and the functions f 1, f 2, f n s

are increasing to the function f. So, what we do we look at the maximum of this column.

So, what is this column this column is the maximum or the functions s 1 n, s 2 n and s n

n.  So, call  this  as  g n.  This  function is  called g n,  so the observation  is  e g  n is  a

maximum  of  nonnegative  simple  measurable  function.  So,  it  is  nonnegative  simple

measurable each g n is less than or equal to f n, because you are going only going up to

this corner only.

So, each g n is less than or equal to because s 1 n is less than f n, s 2 n is s n, f 2, f 1 is

less than f 2 and so on. So, this says g n will be less than or equal to f n and each f n is

less than or equal to f. So, each g n is less than or equal to f n is less than f. So, if you

write the limit of g, g n to be, so write the limit of this to be equal to g then g is less than

or equal to f by this simple construction.

Also for any fixed j let us look at s n j. So, let us look at s n j, where j is fixed and n is

going to vary, so as n varies what happens to this functions. So, for every fixed j this

sequence of functions is going to be s n j is less than or equal to g n and g n is less than

or equal to f. So, we let g less than or equal to f. So, s n j is less than or equal to g n for j

between for between 1 and n. So, that will give us that f is also less than or equal to j.
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 So,  that  will  prove  the  theorem  that  limit  of  increasing  sequence  of  nonnegative

measurable functions, if f n s is equal to sequence of nonnegative measurable functions

increasing to f then integral of f d mu is equal to limit of n going to infinity integral f n d

mu. So, this is called monotone convergence theorem, monotone because we are looking

at monotonically increasing sequences, f n and convergence because we are looking at

the  convergence  of  the  integrals  of  integral  f  n  d  mu.  So,  this  proves  monotone

convergence theorem.

A let  us  remark  we  have  proved  the  theorem  monotone  convergence  for  f  n  is  a

increasing sequence. So, naturally the question arises will the similar result hold if I have

a decreasing sequence f n of nonnegative measurable functions, that results unfortunately

is not true.
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 So, here is an example which says that if  f  n is  a sequence of functions which are

nonnegative measurable, and that decrease to a function f then integral of f need not be

equal to integral of f n d mu, and the example is on the Lebesgue measurable space. So,

look at x to be the real line,  the sigma algebra to be the sigma algebra of Lebesgue

measurable sets and mu to be the Lebesgue measure.

Look at the function f n, which is the indication function of the interval n to infinity. So,

the claim is so, this is actually a nonnegative simple measurable function, each f n and f

n is decreasing and decreasing to the identity function identically equal to 0, that is quite

obvious to see so, what is f n. So, we are looking at, so here is n and we are looking at

the interval n to infinity.
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So, we are looking at this interval, and we are looking at the indicator function of n to

infinity. So, the function is 0, and it is 1 here so, the function is this site is 1 so, this is the

function f n it is 0 here, up to here and then it starts and goes so, that is the function f n.

So, we take n plus 1 so, this is n plus 1. So, n plus 1 will be 0 here, but f n is equal to 1

here. So, clearly f n of x is bigger than or equal to f n plus 1 of x for every x.

So, f n is a sequence in l plus and f n is decreasing, and the claim is f n decrease to f of x

which is identically equal to 0 for every x and that because if I take any point x on the

real line then I can find some integer n say n naught which is on the right side of it then.

So, for every x belonging to real line fix, I can find a point n not a positive integer n

naught of course, it will depend on x says that n not of x is bigger the x. So, that will

imply that the indicator function of n not to infinity, or n naught to infinity let us even n

to infinity at x is going to be equal to 0, for every n bigger than or equal to n not and that

is my f n of x so f n of x is equal to 0 for every n bigger than so; that means, f n of x

convergence to f of x which is equal to zero.

So,  f  n  is  a  sequence of  nonnegative  measurable  functions  which  is  decreasing  to  f

identically zero, but we if you look at the integral of each f n, so what is the integral of

each f n, so integral of f n, d lambda. So, there is integral of the indicator function n 2

infinity d lambda. 
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So, that is equal to lambda of n 2 plus infinity, and that is equal to plus infinity for every

n. So, integral of f n is equal to plus infinity for every n and integral of f d lambda is

equal to f is 0; so, it is 0. This implies that integral f n d lambda does not converge to

integral  f  d  lambda,  whenever  f  n  is  a  decreasing  sequence of  function  nonnegative

simple nonnegative even simple function we are given example here. So, for decreasing

sequences this result does not hold. So, that gives a importance to monotone convergence

there;  that  means,  whenever  a  sequence  f  1  of  nonnegative  measurable  function  is

increasing, than integral f is equal to limit integral f n d mu for decreasing this n not

hold. So, this is what we have shown just now by an example.

So; however, 1 can prove not n equality, but some kind of inequality for a sequence of

nonnegative measurable functions, and that is also an important result. 
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So, let us prove the result which is called fatuous lemma, it says let f n be a sequence of

nonnegative measurable functions, then the integral of limit inferior of f n d mu is less

than or equal to limit inferior of the integrals f n d mu. So, this is only on inequality and

it need not be any quality, so what we are saying is if f n is a sequence of nonnegative

measurable functions, then it is always true that the integral of the limit inferior of f n’s is

less than or equal to limit inferior of the integrals. So, let us give a proof of this theorem,

so to prove this theorem. 

(Refer Slide Time: 23:47)



So, let us just once recall,  what is so, f n is the sequence of nonnegative measurable

functions. So, each f n is a nonnegative measurable function, and we want to look at limit

inferior of f n as n goes to infinity this is a function so, let us observe how this function is

defined limit inferior of f n at a point x is defined as, you take the infimum from some

stage on words. So, m bigger than or equal to n of f n of x. So, look at the numbers f n of

f x f m of x for m bigger than or equal to n so, I am looking at the tale of the sequence f n

of x from a m onwards so, this number infimum will depend on m. So, let me take the

supremum of this overall m so, first take the infimum from some stage on words and

then take the supremum of these infimums.

So, let us observe that this infimum let us put a bracket here so, observe so, let me call it

as phi m to be the infimum from the stage n on words, so, infimum of m bigger than or

equal to n of f n of x phi m of x to be defined as the infimum from the stage n onwards of

fm  of  x.  So,  then  because  it  is  a  infimum  of  a  sequence  of  functions  which  are

nonnegative measurable, so clearly, so note so, observation is that each phi n is also a

nonnegative measurable function.

So, it is a nonnegative measurable function that is 1, and secondly we are taking the

infimum from some stage n onwards. So, if you increase so, the claim is this phi n is

increasing this is a increasing sequence because phi. So, phi n from the infimum from the

stage n onwards is going to be less than or equal to the infimum from the stage n plus 1

onwards because we will have more numbers for which you have taking infimum; so,

infimum can the infimum when you take infimum or more numbers then infimum when

decrease. So, infimum from the stage n on wards and the infimum from the stage n plus 1

n plus 1 onwards, so that says that the infimum from the stage n plus 1 onwards, will be

bigger than or equal to the infimum so increasing that is phi n plus 1 is bigger than or

equal to phi n of x, for every n. So, it is a increasing sequence of nonnegative measurable

functions and its limit is nothing, but the limit inferior. 
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So, it is increasing and limit n going to infinity of phi n is equal to limit inferior of f n n

going to infinity, so just stage is set perfect for an application of a monotone convergence

theorem, phi n is a sequence of nonnegative measurable functions phi n s are increasing.

So,  by  monotone  convergence  theorem,  so,  we  can  apply  implies  by  monotone

convergence theorem, by monotone convergence theorem that integral of limit n going to

infinity of phi n d mu, is equal to limit integral phi n d mu n going to infinity. So, this is

nothing, but so, this side is nothing left hand side is nothing, but integral of limit inferior

n going to infinity of f n, d mu. So, that is equal to limit of integral phi n’s of integral phi

n’s. Now let us look at what is phi n; phi n is the infimum from the stage n onwards, so

each phi n is less than or equal  to f n.  So,  that is  the observation from here by the

definition of phi n we have that each phi n is less than or equal to f n so, integral of phi n

will be less than or equal to integral of f n. So, it will be less than or equal to limit

inferior of n going to infinity.

So, what we are observing here is because each phi n is less than or equal to f n. So, this

implies. So, this is what we are using here that is phi n is less than or equal to f n, then

the n the limit n integrals of phi n s are increasing so it limit exist, so the limit n going to

infinity integral phi n d mu is less than or equal to; however, integral of phi n s f n’s may

not exists. So, we can say it will be less than or equal to limit inferior of integral f n’s d



mu. So, this is what is being used in this conclusion, and that proves the theorem what is

called the fatuous lemma.


