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Lecture – 16 B
Measurable Functions on Measure Spaces

Next, we are going to look at measurable functions which are defined on measure spaces.

So,  they play also  a  play role  later  on.  So,  we want  to  define, we want  to  look at

functions F, which are defined on a set X taking extended real values and on X there is a

sigma algebra S and a measure mu given on S. So, let us first define what is the meaning

of the notion of almost everywhere. So, we say that
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a property P about the points of X is said to hold almost everywhere with respect to the

measure mu. If you look at set of points X for which the property P does not hold at X.

So, look at all those points of X, such that the property P does not hold at the point X.

So, this is a subset and we want this subset belongs to the sigma algebra and mu of E is

equal to 0.

So, what we are saying is except for a set of measure the property holds. So, that  is why

we give it  a  name that  the  property  P holds  almost  everywhere  with respect  to  the



measure mu. Let me illustrate this with some examples; let us take a function f and we

look at the statement that f is 0 almost everywhere. So, f is a function which is extended a

function  defined  on  the  set  X and  we  want  to  say  that, this  function  is  0 almost

everywhere. 

So, look at the set a points where f is not  0. So, what will the statement mean that set

where f is non 0, should be a element in the sigma algebra and its measure should be 0.

So,  X belonging to  X say that f of X is not  zero, that should be a element in the sigma

algebra and its measure is a measure of can be defined only when the set is in the sigma

algebra. So, mu of that set is equal to  0. So, the statement that f is equal to  0 almost

everywhere will mean mu of measure of the set. A points where fx is not  0 is 0. Let us

look at another illustration of this.
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The statement that f is finite almost everywhere what will that mean? So, that will mean

look at the set of points where f is not finite; that means, what f is a extended real valued

function. So, it can take the value plus infinity or minus infinity. So, the set of points  x

belonging to x. So, that mod fx is equal to plus infinity. So, that is same as where, either f

of x is plus infinity or f of x is equal to minus infinity that set is in the sigma algebra and

mu of that set is equal to 0. So, saying a function f is finite almost everywhere means the

set  of points, where it can take the values plus infinity or  minus infinity is the set  of



measure 0. So, let us look at two functions f and g and let us look at the statement that f

is  strictly  bigger  than  g  almost  everywhere.  So,  f  is  strictly  bigger  than  g  almost

everywhere what will that statement mean; that means, the set of points where fx is not

strictly bigger than and that is the same as the set of points, where fx is less than or equal

to gx.

So, the compliment of that statement is fx less than or equal to  gx. These set of points

have got measure  0. So, saying that fx is strictly bigger than g almost everywhere with

respect to mu means mu of the set, where this statement is not true and that is fx less than

or equal to gx is 0.
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This concept of almost everywhere is quite useful when looking at measurable functions.

So, let us prove the property that if f and g are too extended, a real value functions say

that fx is equal to gx almost everywhere, mu then measurability of one of the functions f

implies the measurability of the other function g. So, f is measurable, S measurable, if and

only if g is  S measurable. So, let us prove this property that if two functions are equal

almost everywhere then the measurability is not change one is measurability of one. So,

let us look at f.
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F is from X to  R star g is also from X to  R star and we know that the set of points  X

belonging to X. Such that fx not equal to GX. This set as mu measure equal to 0. So, let,

suppose f is S measurable to show g is S measurable. So, to show that g is measurable.

Let us look at g inverse of any interval I. So, g inverse for every interval I, I an interval in

R star then g inverse of I, we want to show that.

So, claim is that this belongs to  S for every interval I. Now, we have to transform this

property, this set into something regarding  g. So, let regarding  F. So, let us look at g

inverse of I is same as all X belonging to X such that gx belongs to I. So, this is a subset

of the set X. So, what I can do? I can write this set S. So, g inverse of I.
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I  can write  it  as intersection of.  So,  X belonging to  X say that  gx belongs to  I and

intersected with the set A also union. So, intersected with A compliment. So, g inverse of

I. I have intersected with  A and  A compliments. So, it is a union of these two sets  X

belonging to X. Such that g of x belongs to I intersection A complement right. Now, let us

look at the first set. So, this is gx belonging to I intersection A and what was the set A,

what is set A, where A is the set x belonging to X where fx is not equal to gx FX. So, let

us observe where given, we are given that  mu of Aequal to  0.  So,  that  automatically

implies that A belongs to the sigma algebra S and that automatically implies that the set x

belonging to X such that gx belongs to I intersection A also belongs to the sigma algebra.

So, this set also belongs to the sigma algebra. Why because this is subset of A and A is a

set of measure O. So, this is a set of measure 0 and we have already assumed our measure

spaces are complete. So, because of.

So, they implies this is, so, because the measure space X S mu is complete. So, we have

made the assumption that we are working on complete measure spaces. So, that gives

relay that shows the important of complete measure spaces. So, this set belongs to A and

the  other  part  a  complement  on  a  complement  f  is  equal  to  g  and  replace  it  by a

complement.  So,  the  set  X belonging to  X such that  gx belongs  to  I intersection  a

complement is same as the set  X belonging to  X,  where fx belongs to  I intersection a

complement, because on a complement f is equal to g so; that means, what; so, g inverse



of I is written as g inverse of I intersection A. So, let us just rewrite this statement again.
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So, what we are saying is g inverse of.
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I  can be written as  g inverse of  I intersection  A union g  inverse of  I intersection a



complement  and  that  is  same  as  g  inverse  of  I intersection  a  union  f  inverse  of  I

intersection a complement, because on a complement f is same as g and this is a set of

measure 0 mu of this set is equal to 0. So, implies that this set g inverse of I intersection a

belongs to the sigma algebra and this set f is measurable. So, implies this set is in the

sigma  algebra  A is  in  the  sigma  algebra.  So,  a  complement  in  the  sigma  algebra

intersection in the sigma algebra. So, this element belong to the sigma algebra. So, and

this is a union of two elements in the sigma algebra.

So, this implies that g inverse of I also belongs to the sigma algebra S. So, we have shown

f measurable f equal to  g almost  everywhere mu implies g measurable.  So,  that  is a

importance of measurable functions equal almost everywhere, but keep in mind we have

used  the  fact  that  underlying  measure  spaces  A is  a  complete  measure  space.  So,

measurable functions; that means, this says that if f is measurable, you can change it's

values on a set of mu measure 0 and still the function will remain measurable. So, another

interpretation of this result is if f is measurable and is you change its values on a set of

measures  0 and  call  that  function  as  G.  So,  that  is  measurable.  So,  that  is  a  quite

important fact another application of this concept of almost everywhere is the following.

Look at  the sequence fn sequence of measurable functions converging to  a function f

almost everywhere that is the set of points where fx is not equal to the limit as got. This

set has got measure 0, then the claim is, then the f is also measurable. So, just now we

have  proved  that  if  a  sequence  fn of  measurable  functions  converges  to  f  than  f  is

measurable and now we are saying that if FNS are defined on a complete measure space

and  fn converges  to  f  almost  everywhere  even  then  this  property  remains  true.  So,

basically, the idea is same as before. So, let us just look at how does one write a proof of

this statement. So, we have got a complete
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Measure  space  X S mu measure  space. They got  a  sequence  fn  of  functions  FNS

measurable FNS converge to f almost everywhere mu so; that means, look at the set A X

belonging to X such that fn of X does not converge to f of X, then what is given to us that

this set a belongs to the sigma algebra and mu of a is equal to 0. So, now, let us look at,

so, we want to show that f is measurable to show f is measurable. So, once again look at

for any interval I look at f inverse of I.

So,  I can write  it  as  f inverse  of  I intersection a  union f inverse of  I intersection a

complement right now on A. So, we are given A, it is a set of measure 0. So, this is a

subset of A. So, that has set of measure 0. So, this implies that f inverse of I intersection

A belongs to the sigma algebra  S, because this is a set of measure  0 and our underline

measure space is complete and on this portion a complement fn is converging to  A. So,

this f I can write it as limit N going to infinity of fn inverse of I intersection a complement.

So, this set is same as this and now, we know that fn on a compete FNS converge to f on

a complement. So, that is a measurable set. So, this is a element in the sigma algebra,

because on a complement fn is converging. So, if we restrict ourselves to a complement,

then that must be a element in the sigma algebra. So, both belong to a sigma algebra. So,

this belongs to the sigma algebra S. So, the concept of almost everywhere when dealing

with complete measure spaces, we can exploit that property. So, this implies that if fn is a



sequence of measurable functions converging to a function f almost everywhere then the

limit also is a measurable function.

So, this emphasizes the property of something holding almost everywhere. Now, let us

specialize.
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The case when our underlying measure spaces set is the real line, then we have got two

sigma algebras, when X is equal to real line, then we have got two sigma algebras one is

the Borel sigma algebra and other is the sigma algebra of Lebesgue measurable sets and

we  have  shown  that  the  sigma  algebra  of  Borel  subsets  is  a  subclass  of  Lebesgue

measurable sets. So, when we are looking at functions defined on real line look taking

values  as  extended  real  numbers. There  are  two  possibilities  to  analyze  whether  the

function is measurable with respect to the Borel sigma algebra or measurable with respect

to the Lebesgue sigma algebra. 

So,  that  two notions of measurability as where as real line is concerned and, so,  will

separate them out. So, will say a function is Lebesgue measurable, if the inverse image of

every interval in R star is a Lebesgue measurable set. So, if the inverse image of every

interval in R star is a element in is a Lebesgue measurable set, then will say that function



is Lebesgue measurable and will say a function is Boral measurable if for every interval in

R star. You will pull back its image is a pre image in R is a Boral set in R. So, here is the

difference Lebesgue measurable requires that the inverse image is in the Lebesgue sigma,

algebra sigma, algebra of Lebesgue measurable sets and f inverse of  I in  BR says, it is

inverse image, is everywhere as  always a  Borel set  in  R.  So,  obvious because Borel

subsets for a subset of R.

So,  it;  obviously,  clear  that  every  Borel  measurable  function  is  also  a  Lebesgue

measurable function, because inverse image of every interval. If it is in BR and BR is a

subset  of  LR.  So,  every  Borel  measurable  function  is  also  a  Lebesgue  measurable

function, for  example,  let  us  look  at  function which is continuous.  So,  if  R to  R is

continuous function, then it is going to be a Borel function. So, let us prove that every

continuous function is a bore measurable function and hence, also Lebesgue measurable.

So, f is a function,
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Which is defined from X, sorry X is real line. So, f is a function defined from R to R and f

is continuous claim that f is Borel measurable, that is f inverse of any set E belongs to BR

for  every, for every set.  Say E belonging to  BR and continuity of a  function can be

expressed in terms of open sets. So, let us look at the class A of all sub sets E belonging

to BR such that, this property is true f inverse of E belongs to BR. So, what you have to



show to show saying that f inverse of E belongs to  BR for every E in BR. It  is on a

equivalent to saying to show that this A is equal to BR and that is were we are going to

use our sigma algebra technique. So, to show that A is equal to BR. Note that A is already

a subclass of BR, because of we are picking up sets in BR. So, to show that A is equal to

BR we have to show that BR is inside A.

So, for that will show two steps; one open sets are contained in A and second will show

that A is a sigma algebra, because once A is a sigma algebra and include open sets, it must

include the smallest  sigma algebra generated by open sets that  is BR. So, BR will be

inside A and will be through. So, to prove this two facts will call it obvious because of the

given condition. So, fun open sets belong to A. So, let
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U contained in R, BE open f continuous implies that f inverse of U is open and hence, this

means f inverse of U belongs to  BR. So, what we have shown is, if U is open then f

inverse of U is in BR. So, that proves. So, implies that the open sets are inside A and A is

a sigma algebra that is more set forward. So, let us observe, empty set is equal to f inverse

of empty set, so, and R is equal to f inverse of R. So, both belong to A. So, because

empty set and the whole space they are equal to this. So, this is obvious empty set and the

whole space belongs the second property. If E belongs to A that implies f inverse of E

belongs to BR and that implies f inverse of E complement belongs to BR and that implies,



because this set is same as f inverse of E complement that belongs to BR. So, what you

have shown is E belongs to A, then f inverse of E complement belongs to BR and that

implies that E complement belongs to a.

So; that  means, E complement.  So,  the class a includes empty set  includes the whole

space that is closed under complements. So, finally, let us show that it is also closed under

countable unions so; that means,. So, let us take sets EN
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Belong to A N bigger than or equal to one then look at; that means, what we are given

that f inverse of EN belongs to the sigma algebra BR, because property EN belongs to a

means, then inverse image is in BR, so, but that implies BR is a sigma algebra that implies

union 1 to infinity, f inverse of EN belongs to BR and now a simple observation that this

set is same as f inverse of union EN, N equal to 1 to infinity that belongs to BR. So, we if

EN is belong to A then f inverse of the union belong to BR.

So; that means, union of N equal to one to infinity ENS belong to  BR belongs to  A, if

ENS belongs to  A, then f inverse of the union belongs to  BR; that  means, the union

belongs to  A. Hence, we have shown that  A is a sigma algebra of subsets of  A and it

includes open sets. So, it must include BR and hence, this is equal. So, that proves that



every continuous function from R to R is Borel measurable and hence, it is also Lebesgue

measurable. So, all topologically nice functions, continuous functions, become Lebesgue

measurable on the real line. Let us look at some more properties.
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So, we showed that every Borel function is Lebesgue measurable.

So, there exists functions first of all R to R star, which are not Lebesgue measurable. So,

to prove that we have to only simply observe that there are sets, let us go back and recall

that for f function.
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F from R to say R star. Let us f equal to indicator function of a set A, where A is a subset

of X. So, recall KI of A is Lebesgue measurable. If and only if A belongs to l of R. So, if

you can produce the set which is not Lebesgue measurable, then the indicator function

will not be Lebesgue measurable. So, the answer to this question does like this the non

Lebesgue measurable functions depends upon whether there is non Lebesgue measurable

sets. And if you recall we had proved the fact that the non Lebesgue measurable sets

exists, not that question is related to basic set theory. So, if we assume axiom of choice,

then we construct it non Lebesgue measurable sets. So, assuming axiom of choice on can

claim that  there exist  functions which are not  Lebesgue measurable and by the same

reasoning one can ask the question, do there exist functions which are Borel measurable,

but not which are Lebesgue measurable, but not Borel measurable, because every Borel

measurable is Lebesgue measurable.

So; that means to, for that by a same logic again. If we pick up a set A which is Lebesgue

measurable, but not a borel, set then the indicator function of that set is going to be a

function, which is going to be Lebesgue measurable, but not Borel measurable. So, these

two  questions  that  whether  there  exists  non  Lebesgue  measurable  non  Lebesgue

measurable functions and whether there exists functions which are Lebesgue measurable,

but not Borel get tied up with the fact that the Lebesgue measurable subsets is a proper

subset of power set of R and BR is a proper subset of the Lebesgue measurable sets. So,



with that we conclude the study of property of measurable functions.

So,  basically, let  me just  recall the measurable functions are functions defined on the

underlying sets X with properties that the inverse image of every set E in the Borel sigma

algebra of extended real numbers. The inverse image is again in the sigma algebra on the

domain space that is S. So, this is a property about the inverse image is of sets being in

the sigma algebra S and will see that how this property plays a role in our further study of

study of integration. So, will do the in the next lecture will start the notion of integration

for measurable functions.

Thank you. 


