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And now let us prove that this is sn is so, claim we want to show sn is increasing. So, let

us fix x belonging to x, to show sn plus 1 of x is bigger than or equal to s of x sn of x for

every n right. So, let us look at that. So, why is that true? 
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now look what is the value of either f of x is bigger than or equal to n plus 1, is no let us

look at the slightly differently. So, I want to prove that sn is increasing. So, to prove the

increasing part.

So, let us. So, fix n right. So, we want to look at. So, what is sn plus 1 of x, say that is

going to be dependent upon whether. So, either it is n plus 1 or it is going to be some k

minus 1 over 2 to the power n plus 1 for some k between 1 and n plus 1 times. So, 1 over

2 to the power n plus 1. So, what do I saying is sn plus 1 x either it will be bigger it will

be equal to n plus 1 that will be the case if f of x is bigger than or equal to n plus 1. or it

will be equal to 1 of lower values of one of the sub intervals at the n plus 1 th stage in the

n plus 1 th stage we will be dividing the interval into 2 n plus 1 parts.

So, let me write this draw this picture slightly here to understand what is happening. So,

here is so, the here is let us say j by j minus 1 by 2 to the power n. and that is j to the

power 2 to the power n at the n th stage right f of x is somewhere in between. now at the

next stage what we are doing we are going to divide this into 2 equal intervals. So, that

this part  is this part  is something divided by 2 to  the power n plus 1 and this part  is

something divided by 2 to the power.



So, what will be this. So, this will be 2 times j minus 1 divided by 2 to the power n plus 1.

and this part would be 2 j divided by 2 to the power n plus 1. and that is a mid-point

middle line in between. So, now, my sn plus 1 x depending on fx, if f of x is here if this is f

of x then sn plus 1 is this is a value of sn plus 1. So, this is the value of sn plus 1 and if f is

here, then this is the value of sn plus 1. So, either f of x will be here or it will be here ok.

So, if f of x is here it lies in that interval of length 2 to the power n plus 1, the value is a

lower end point. So, value of sn is here, but in that case what is the value of this is the

value of sn plus 1. So, this is the value of sn plus 1 x and what is the value of sn, that is

always going to be equal to this value. and if f of x is this then this is the value of so, sn

plus 1 x either will be here or it will be here and sn plus 1 of x will always be here. So, this

value is less than or equal to this value. So, that analysis let us just write. So, it is equal to

this. So, in either case. 
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So, sn plus 1 of x either it will be n plus 1. So, either it will be n plus 1 or it will be which

is bigger than n which is equal to sn of x. if not if it is bellow right then the value is if it is

in one of those intervals then the value is going to be some k minus 1 over 2 to the power

n plus 1 right. which is always going to be equal to 2 to the power n the lower value here.

So, let us it is difficult to write those symbols. So, that lower value is k minus 1. So, this

is k minus 1. So, that is less than or equal to k minus for some j and that will be equal to j



minus 1 over 2 to the power n which will be equal to sn of x geometrically it is quite clear

what is happening.

So, either if f of x is here in between here and the value of sn plus 1 is this value. and if f

of x is here sn if plus value is this one which is a value of sn also. So, in either case. So,

this implies hence sn x is increasing. and let us prove that snx converges to f of x that the

limit is equal to f of x. So, fi fix s if x is fixed. So, the either f of x is equal to plus infinity

that is one possibility, but then if this is plus infinity, what is sn of x that is always f of x is

always bigger than n for any n. So, snx is going to be equal to  n which goes to  plus

infinity sn goes to infinity. So, if f of x is plus infinity then sn x is equal to n for every n

and hence it goes to plus infinity. or what is second part of building f of x is not infinity;

that means, it is a real number. So, it will lie between some n it will be less than or equal

to less than or equal to some n.

So, it will be some 0 less than or equal to n. So, then in that case, there exist a n such that

this is happening. So, also will be less than n plus 1 and so on. So, and what is sn of x in

that case in that case sn of x is going to be some k minus 1 over 2 to the power n right if

this is less than this then f of x will belong to one of the intervals k minus 1 or 2 to the

power n and k by 2 to the power n right. So, implying that is a same. So, what is the

difference between sn, and this sn is the lower value f is something it between. 
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So, that implies that the absolute value of f of x or actually f of x is bigger. So, minus sn

of x will be less than k minus 1 by 2 to the power n for some n and; that means, if this is

happening for some n.

So, let us say for some n naught then for every n bigger than or equal to n naught f of x

minus sn of x is less than right. it will be less than those k minus 1 by 2 to the power n for

some k and some n.

So, it will be less than sorry not k minus I, 1 over 2 to the power the difference will be at

the most both lie in the interval of length 2 to the power n naught. So, it will be less than

1 over 2 to the power n 2 to the power n for every n bigger than n naught and that implies

that sn x converges to f of x. now so let me just go over to the construction once again to

understand because this is a important construction. 
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So, it says that I want to even a function f which is non negative measurable we want to

construct a sequence of simple functions, which are non negative which are increasing and

they converge to f of x. So, what we do we divide the range. So, this is the range of the

function is a subset of it. So, it divided into a partition the range. So, partition into 0 to n.

So, this is 0 and this is n union n to infinity upwards. So, this is and the portion 0 to n is



divided into sub intervals each of length 1 over 2 to the power n. So, this will look like k

minus 1 by 2 to the power n k by 2 to the power n k equal to 1 from 1 to how many such

intervals will be there each of length 2 to the power n total length is n. So, n times 2 to

the power n right.

So, this is we have partitioned range now, given a point x f of x either it will be beyond n

or given n either it will be beyond n, or it will be between 0 to n. if it is beyond then we

define sn of x to be equal to n. So, if the value of f of x is bigger than n then we define it

to be equal to n, n if it is not then it will be between the interval 0 to n. So, it will fall into

one of the sub intervals is somewhere here in some k minus 1 by 2 to the power n k by 2

to the power n. So, we define this lower value of that interval that is k minus. So, this is k

and this is k minus 1.

So,  the  lower  value whether  to  be equal to  the value of  the function sn x.  So,  this

sequence is increasing see for any point x f of x, and sn will be at the most very difference

of 1 over 2 to the power n right for n large enough or if not then sn will go to infinity. So,

that is the idea that it converges and increasing once again comes from the fact that we

are taking the lower value at every stage. So, at any stage either sn plus 1 is bigger than n

plus 1, in that case it will be bigger than n also. So, sn plus 1 will be bigger than sn. if not

it will be in one of those sub intervals or le length 2 to the power n plus 1, but how did we

get those. So, that is so, this total length is 1 over 2 to the power n.

So, when you want to divide the next stage from sn to sn plus 1 we divided it into 2 equal

parts. So, if f of x is here then sn plus 1 is the lower value, here or if a sn plus 1 here it is a

lower value. So, in either case sn is always going to be the lower value. So, that says it is

increasing and convergent. So, that proves the theorem that. 
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So,  what  we have shown is the  following given a  function f x to  0  to  plus  infinity

measurable, there exists a sequence sn or non negative functions which are simple and

measurable increasing to f. So, that is what we have proved.

So, let us come back to the theorem which said that.
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Because this is one of the key theorems in the notion of the for the concept of measurable

functions.  that  every  non  negative  measurable  function  can  be  approximated  can  be

obtained as a limit of non negative simple measurable functions and these non negative

simple functions can be selected to be a increasing sequence. So, you can approximate a

non negative function as a limit of increasing sequence of non negative simple measurable

functions.  So,  this  immediately gives  us  a  corollary for  functions  which are  not  non

negative, but let us before that let me just observe that this sequence this in the proof if

the function f is bounded, then the sequence can be chosen to  be sn to  be uniformly

increasing  to  f  not  only it  converges  point  wise  to  f  you  can  actually claim that  it

converges to f uniformly. So, to prove that it converges to f uniformly if we just observe

because the function is bounded. So, let us just observe that if the function is bounded;

that means, what; that means, f is a bounded function.
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So, it is graph. So, there is going to be n. So, that the graph of the function always stays

bellow this right. So, once n is fixed; that means, f of x is always going to belong to 0 to

n, for some n and for that fn f of x right.

So, let us say n naught. So, n naught is the bound for the function. So, then fn is minus sn

of x is going to be less than 1 over 2 to the power n naught for every n bigger than n

naught. So, this works for all. So, given epsilon bigger than 0, I can select n naught such



that this is true; that means, the same epsilon works for every x; that means, the sequence

sn converges uniformly to f of x. So, this is a observation which we do not may not be

needing it, but is good to observe that if f is a bounded measurable function that. So, this

theorem says that if f is a bounded measurable function, which is non negative then there

is a increasing sequence of non negative simple functions uniformly converging uniformly

increasing to f. So, this is the case for when the function is non negative. in the general

case for a general measurable function, we can look at the positive part and the negative

part of the function approximate the positive part by a sequence approximate the negative

part by a sep sequence of simple functions. and then look at the difference of the 2, and

that will give us a sequence of simple measurable functions converging to f, they will not

have any longer be monotonic. 
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So, as a consequence we had that if f is non necessarily a non negative function, if f is a

measurable function right. Then there exist a sequence of simple functions converging to

it. So, what we are saying is if f is measurable.
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Then I can write f is equal to f plus minus f minus, f minus and we just now observed f

measurable implies both of them are measurable. and for this there is a sequence sn which

is increasing to of simple measurable functions non negative increasing to this there is a

sequence another  sequence call it  as say sn dash which is again non negative simple

measurable functions increasing to f dash. So, if I look at this plus this then that sorry this

minus this minus then this will converge to f. So, call this as your new sequence. So, this

is call that as phi n. So, phi n is a sequence of because difference of simple measurable

functions is measurable.

So, this is a sn is non is a simple measurable function sn dash is a simple measurable

function.  So,  phi  n  is  a  simple  measurable  function  sn  converges  to  f  plus  sn  dash

converges to f minus. So, the difference will converge to the difference which is f only

thing is so, this is a phi n converge to f, but we cannot say phi ns are increasing, anymore

this each one of them is increasing, but the difference may not be increasing. So, that

proves  that  for  a  general measurable function is measurable if and only if there  is a

sequence of simple measurable functions converging to f.

So, now let us look at some more general properties of measurable functions. let us take,

we are  going to  look at  the  various  properties  given 2  functions  f and g  which are

measurable given a scalar whether some of the measurable functions is measurable or not,



whether the product or measurable functions is measurable or not whether scalar multiple

of a measurable function is a measurable or not. So, let us list all the properties which are

true.  So,  first  say if f is measurable and alpha is a scalar then alpha times f is also a

measurable function.

So, to for that this alpha could actually be any extended real number also depending upon

because we are taking only. So, keep in mind I am taking only real valued functions for

the time being f and g are both real valued functions which are measurable and alpha is a

real number. So, the claim is alpha f which is again a real valued function is measurable.

now we can for this we can apply our sequential criteria because f is measurable. So, there

is  a  sequence  of  simple  measurable  functions  converging  to  it  and  So,  look  at  the

sequence.

So, let us look at the proof of this. 
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So,  that  says  f  measurable  implies  there  exist  a  sequence  sn  of  simple  measurable

functions  converging  to  f,  but  that  implies  by the  properties  of  sequences  alpha  sn

converges to  f. because sn is simple measurable a constant times a simple measurable

functions are again a measurable. So, this is a sequence of simple measurable functions



converging to f. So, implies by the previous theorem f is measurable. and the same proof

works for some of 2 functions, let us say f and g are 2 measurable functions. we want to

prove that f plus g is measurable. So, f measurable implies there is a sequence of sn of

simple measurable functions converging to it g is measurable. So, that is the sequence sn

dash of simple measurable functions converging to it. So, that implies that sn plus sn dash

convergence to f plus g and this is once.

Again, this is a sum of simple for every n this is a sum of simple for measurable functions.

So,  this  is  again  a  simple  measurable  function.  So,  we  got  a  sequence  of  simple

measurable functions which converges to f plus g. So, implies that f plus g is measurable.

So, that implies f plus. So, we approved the next step namely if f and g are measurable

then f plus g is also measurable, let us look at the next property if f is measurable then

mod f is also measurable. why is mod f measurable you can look at 2 different ways. 
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Now, we have got enough techniques to conclude this see either we can write mod f is

equal to f plus f minus. this is a observation which will play a role later on also. this is the

positive part of the function this is a negative part of the function f measurable implies

both f plus f minus measurable. implies f plus f minus f minus measurable and this is

precisely my f. So, that is one way of looking at it or you can also look at from sequence

point of view f measurable, implies there is a sequence sn of simple measurable functions



converging to f, but then a simple argument which works for sequences which what are

have already seen that mod of sn convergence to mod f and observation. if sn is simple

then mod f also is mod sn is also simple for every n.

So, this is a sequence of simple measurable functions converging to f mod f; that means,

mod f is measurable. So, either you can look at sequences or you can look at the positive

part and negative part either one will be help you to conclude that if f is the measurable.

then mod f is also measurable. let me look at another property of a measurable functions

namely that if we are seen this property for simple functions that if e is a set in the sigma

algebra s and you f is measurable then product of f times indicator function of e is also a

measurable function.
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So, once again we can take the help of the criteria.  just  now approved, f measurable

implies that there exist a sequence of simple measurable functions converging to f at every

point, but once that is true if sn converges to f then that implies look at chi e times sn that

will converge to chi e times, f right. because this remains multiplying by a function. So,

this converges to the simple properties of sequences and now observe that, this is if sn is

simple measurable function then the indicator  function of e times sn is also a simple

measurable function. 



So, that converges to indicator function of e times. So, that implies that indicator function

of e times f is measurable right. In fact, we can go a step further and prove that you can

multiply by the same argument espousing f and g are measurable, for f we have got a

sequence sn of simple measurable functions converging to f we have got a sequence sn of

simple measurable functions converging to sn dash converging to g. So, that implies if I

multiply sn dash that converges to f times g and product of simple measurable functions.

We have already seen is again a simple measurable function. So, a sequence of simple

measurable functions converging to f of g; that means, implies that fg is measurable. So,

product of measurable functions is also measurable.
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I think will close here today and look at the sequences of measurable functions next time.

So,  today  what  we  have  proved  we  have  looked  at  the  an  important  criteria

characterization of measurable functions a function f defined, on a set x taking extended

real valued functions is measurable if and only if keep in mind it is a characterization.

So, f measurable f is a function defined on x is measurable if and only if we can find a

sequence of simple functions converging to it. and if f is non negative we can find the

sequence of simple functions sn which is increasing and converging to f. if in addition we



know that f is a bounded measurable function then you can have the sequence of simple

functions sn which converges uniformly to f. So, that have the important criteria we have

seen some applications today, we will see more application later on also and then we

looked at  the algebra of measurable functions, we proved that  if f is measurable then

scalar times f is also a measurable function.

If f and g are measurable then f plus g is also measurable, f into g is measurable the mod f

is also measurable. this is for the real valued functions in case the functions are extended

real valued you while defining f plus g and f into g you have to be slightly careful, because

f may take the value plus infinity at a point and g may take the value minus infinity. then

how will you define f plus g. So, for such kind of problematic sets we can separate them

out right. So, separate out a set a on which f of x is plus infinity or g of x is equal to

minus infinity or f of x is minus infinity and g of x is the plus infinity. So, on this set a we

may not be able to define what is f plus g, but outside that we can define f plus g and this

set,  where f is plus infinity and g is equal to  minus infinity or other way around is a

measurable set is in the sigma algebra.

So, we can change the values we can define f plus g to be equal to anything we like and

still that  f plus  g  will be a  measurable function.  So,  modifications  of  the  algebra  of

measurable functions properties still remained true when the functions are extended real

valued. we will continue the study of sequences of measurable functions next lecture.

Thank you.


