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Lecture - 14 A
Measurable Functions

Welcome to lecture number 14 on measure and integration. Today will start looking at

functions on measurable spaces, they are called measurable functions.
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To start with will assume that we have a measurable space X S. So, is a set S is a sigma

algebra of subsets of the set X and we have a function f defined on X taking extended

real values. So,  the R star denotes  the set extended real line,  that is a set  of all real

numbers together with plus infinity and minus infinity and with the possible operations

that we have defined earlier.

So, will be looking at functions which are extended real valued defined on the set X. To

start  with you want  to  prove the following namely, for this  function f  the following

statements are equivalent inverse image of the interval open interval c closed at infinity

if you take the inverse image of any such interval then that belongs to the sigma algebra

S. We will show that this is equivalent to say that the inverse image of the closed interval

c to infinity belongs to S, for every c the real number. And also this is  equivalent to

saying that the inverse image the interval minus infinity to c minus infinity closed c open



also belongs to the sigma algebra S. And then will show that this is also  equivalent to

saying that the inverse images of all the intervals of the type to minus infinity to c, c

closed belongs to S for everything belonging to R.

So, will show that these 4 are equal and to each other and also these are all equivalent to

the following namely the points f inverse of plus infinity and the set f inverse of minus

infinity along with f inverse of every set E a borel set in R they belong to S. So, we will

show that for a function f defined on X taking extended real values send it real number as

the values these 5 conditions are equivalent. So, methodology is going to be will prove

one is equivalent 2, 2 is equivalent 3, 3 is equivalent to 4 and any of them is equivalent 5.

So, let us start proving this properties. 
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So, first property is we are given that f inverse of c to plus infinity belongs to S for every

c belonging to R. And we want to prove the same property for f inverse of keep in mind

what  is  f  inverse?  This  is  the  f  inverse  of  c  plus  infinity, is  the  set  of  all  point  X

belonging to x.

Such that f X belongs to c to plus infinity. So, this is set of all points X in the domain

which  are  mapped  in  2  the  intervals  c  to  infinity, f  inverse  does  not  mean  that  the

function is invertible or anything this is the symbol used it is a pull back off the points

which go into this c to plus infinity. So, we want look at f inverse of closed interval c to

plus infinity and you want to show that this belongs to S. So, to show that let us observe



the simple set  theoretical equality namely the closed interval c to plus infinity can be

written as intersection of look at the open interval c to c minus 1 by n to plus infinity and

look at the intersection of all this intervals.

So, keep in mind here is c and hear is c minus 1 over n if the take this open interval. So,

this open interval c minus 1 by n 2 plus infinity includes this close interval c 2 infinity

for every n. So, intersection also included and actually this is equal because given any

point which is slightly bigger than c can be excluded by taking n sufficiently large. So, c

minus 1 over n converges to c that is the basic idea. So, this is the simple identity about

intervals which would be easy to prove.

So, and then this implies that the f inverse of c to plus infinity is equal to f inverse of

intersection and equal to 1 to infinity of c minus 1 over n 2 plus infinity. And here is the

another  of  simple  observation  that  the  inverse  images  of  intersection  are  same  as

intersection of the inverse images. So, this is equal to f inverse of c minus 1 over n to

plus infinity closed. And we are given that whenever the interval is the type c to plus

infinity  open inverse image is  s,  so,  each one of this  sets  belongs to  S is  the sigma

algebra. So, intersection belongs to S. So, this belongs to S. So, basically what we have

done is the close interval c to plus infinity is written as a intersection of open intervals c

minus 1 over n to plus infinity. And observing that the inverse images of intersections are

interactions  of  inverse  images  we get  that  f  inverse  of  the  closed  interval  c  to  plus

infinity belongs to s.

So, this implies. So, we approved one implies 2, let us show that 2 also implies one. 
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So, what is a statement 2? Statement 2 says f inverse of the closed interval c to plus

infinity belongs to S for every c belonging to R. So, that is the statement 2. So, we want

to now prove the same thing for open intervals. So, the idea is open interval c to plus

infinity can be expressed as union of the closed intervals c plus 1 over n to plus infinity n

equal to 1 to infinity. And that is quite easy to verify with the interval c plus 1 by n is to

infinity is inside the interval c to plus infinity.

So, this union is inside it and conversely is easy to check that because c plus 1 over and

goes to c this is actually equal to c 2 infinity. So, now, once again observing that the

inverse image of c 2 plus infinity is equal to f inverse of the union n equal to 1 to infinity

c plus 1 over n to plus infinity. And once again a simple observation that the inverse

images is of union is union of the inverse images is so that gives us that this is f inverse

of c plus 1 over n to plus infinity. And we are given that each one of them belongs to S

and this union of intra union of sets in S s is a sigma algebra. So, implies that this set also

f inverse of c to plus infinity also belongs to s.

So, hence we have shown that 2 implies 1. So, 1 implies 2 and 2 implies 1. So, thus we

have shown that the statement one, implies statement 2 and the statement 2 implies 1.

And if you will see the proofs carefully in both of them we are just try to represent a

closed interval as a intersection of open intervals. And also in the 2 implies one we have

tried  to  use  the  fact  that  you can  represent  in  open  interval  as  a  union  of  closed  a



intervals,  similar  facts  are used in prooving the remaining statements.  So, let  us just

prove the statements namely 2 implies 3.

So, let us prove 2 implies 3. So, the statement 2 is regarding closed intervals.

(Refer Slide Time: 08:58)

 So, we are given that f inverse of this belongs to S for every c belonging to R. So, that is

the statement 2 which is given and we want to show that f inverse of minus infinity to c

open belongs to S for every c belonging to R. And if you look carefully this interval and

this interval are related with each other they are namely complements of each other. So,

the given statement implies that this because this belongs to S. So, it is complement. So,

X minus f inverse of c to plus infinity also belongs to S. And this set the complement of

this is nothing, but. So, here is a small observation that complement of the inverse image

is nothing, but the inverse images compliment.

So, this set is equal to f inverse of R star minus c 2 plus infinity. And that is equal to f

inverse of minus infinity to c open because here is c is closed. So, this also belongs to S

because S is a sigma algebra. So, if a set belongs it  is complement belongs. So, this

belongs  to  S.  And  see  all  this  statements  are  reversible  if  this  belongs  then  it  is

complement belongs. So, these are if and only if statements. So, 2 implies 3 is obvious

by taking complements. Let us prove 3 implies four. So, the statement 3 implies. So,

what is given.
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To us a f inverse of c to sorry f inverse of minus infinity to c open that belongs to S for

every c belonging to R. And from here we want to conclude this closed interval.

So, note. So, once again note that the closed interval to c is equal to. So, let us you want

to include the point c inside. So, it is nothing, but look at minus infinity to c plus 1 over n

the open interval. So, here is c and here is c plus 1 over n. So, this interval the closed

interval is already inside c plus 1 over n for every n. So, if I take the intersection of all

these.  So, that will  give us the closed interval  minus infinity  to c. So, similar to the

earlier argument this implies that f inverse of minus infinity to c which is equal to. So, f

inverse of the intersection that is the intersection of the inverse image is f inverse of

minus infinity to c plus 1 over n, open and each one of them belongs to this S belongs to

S. So, 3 implies 4. So, if f inverse of minus infinity to c open belongs then f inverse of

minus infinity 2 c close also belongs. So, 3 implies 4 l h proof the converse statement

namely 4 implies 1. So, we are given.



(Refer Slide Time: 12:45)

F inverse of minus infinity to c close belong to S for every c belonging to R. And we

want to look at f inverse of the open interval c.

So, that. So, once again the similar situation that is minus infinity to c it is here. And we

want to look at the open interval. So, let us look the union of intervals minus infinity to c

minus 1 over n equal to 1 to infinity. So, there all here is c minus 1 over n. So, these are

all inside it closed interval. So, the unions will give us this open interval. So, once again

taking the inverse images is minus infinity to c is equal to f inverse of the union n equal

to 1 to infinity. And f inverse is union is union of the inverse images. So, that gives us

minus infinity to c minus 1 over n. And all of them each one of them is given to be inside

s.

So, that implies that this belongs to S. So, 4 implies 3 also 2. So, what we are shown till

now is that all the first 4 statements are equivalent to each other. So, first statement was

about intervals of the type minus infinity to c to infinity, open the next one was c close

and then next was minus infinity to c. So, all  inverse images is of all these types of

intervals are inside R inside S. They all the statements are equivalent to each other. Now

let us prove that this implies that f inverse of plus infinity and f inverse of minus infinity

and f inverse of every borel set is inside S. 
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 So, let us assume any one of 1 to 4. So, assume any one of statement 1 to 4. hence all

because they are all equivalent. So, we know that f inverse of a interval belongs to S

whenever for every interval  i  which looks like either  c to plus infinity  or looks like

closed c to plus infinity  or it looks like minus infinity to c open or minus infinity c

closed. So, for all this 4 type of intervals the first 4 state any one of the first 4 statements

implies they belong to S. Now look at any other interval, supposing i is a open interval a

to b open interval a to b, then we can write this open interval a to b as minus infinity to b

open interval intersection with minus infinity to b intersection with open interval a to

plus  infinity. And we know that  inverse  image of  this  interval  belongs to  the  sigma

algebra inverse image of this belongs to the sigma algebra.

So, that will give us that the inverse image of a b is equal to f inverse of minus infinity to

b intersection f inverse of a to plus infinity and both belongs to the sigma algebra. So,

this is belong to the algebra S. So, what you am trying to say is that any one of the

statements 1 to 4 imply that inverse image of every open interval  also belongs.  And

similarly we can take actually closed interval also for example, a close interval a b can be

written as minus infinity to b, intersection a to plus infinity and similarly argument with

imply that in f inverse of this interval also belongs to S.



(Refer Slide Time: 17:11)

So, if you assume any one of this statements 1 to 4 then that implies imply that f inverse

of every interval belong to S for every interval. Now recall that in the real line any open

set say open set in R is a countable union of open intervals. So, in R say open set is u

then u can be written as union of i js j equal to 1 to infinity i js open. Actually you can be

write it  as a disjoint union of open intervals also accountably disjoint union of open

intervals. So, f inverse of u will be equal to f inverse of union disjoint union of i js and

which is same as union of f inverse of i js j equal to 1 to infinity. I think disjoint is not

needed, but any way this is. So, and f inverses of every open interval belongs to S. So,

this belongs to s.

So, if we assume any one of the 4 conditions then that implies that f inverse of every

open set is in the sigma algebra. So, now, this here is the sigma algebra technique. So,

consider the class a of all sets belonging to S all sets belonging all subsets in b R such

that f inverse of E belongs to S. Then just now what we showed the open sets are inside

A. And it is easy to check that a is a sigma algebra and A is a sigma algebra. So, let us

check that that a is a sigma algebra. So, why a is sigma algebra. So, clearly empty set.
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And the whole space and the whole space R belong to a right because X, and the empty

set belong to S. Secondly, let us observe that if a set E belongs to A; that means, that f

inverse of E belongs to S and that implies that f inverse of E compliment belongs to S

because S is the sigma algebra and that is same as f inverse of E complement belong 2 S.

So, implies E compliment belongs to A. So, A is closed under complements and finally, if

E ns belongs to A that implies and f inverse of E n belong to S. So, implies union of f

inverse of E ns also belong to S. Because S is the sigma algebra and hence that implies

that union of inverse images is inverse image of the union. So, union E n also belong to

S. So, implies union E ns belong to A. So, we approved verified that a is a sigma algebra.

So, this is the sigma algebra including open sets. So, it must include the borel sigma

algebra inside, but is already a sub class of borel sets. So, A is equal to the class of borel

sets; that means, if you assume any one of this first 4 conditions in the statement that we

just now stated, then that implies the statement that f inverse image of every borel set is

in the sigma algebra S.

Let us verify that the inverse image is of the points plus infinity and minus infinity are

also. 
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So, note. That plus infinity can be written as intersection of n to plus infinity n equal to 1

to infinity right. So, f inverse of plus infinity is equal to intersection n equal to 1 to

infinity, f inverse of n to plus infinity f inverse of this is equal to f inverse of right hand

side right inside is a intersection. So, it is intersection of the inverse images and each one

is the interval. So, that f inverse image inverse image of each one of the intervals belong

to S. So, intersection belongs to S. So, this belongs to S and a similar argument for minus

infinity will implies was minus infinity can be written as intersection of n equal to n

equal to minus 1 to infinity of minus infinity to minus n.

So, inverse image of this will be intersection of inverse images and will imply that f

inverse of minus infinity belongs to S. So, we have shown that if you assume any one of

the 4 conditions stated above then that implies that the inverse image of the point plus

infinity and inverse images of very borel set belong to the sigma algebra S. The converge

statement is obvious because every interval is a borel set.

So,  saying that  statement  5  implies  any one  of  the  statements  for  above is  obvious

because every interval is a borel set that is a special case. So, we are proved this theorem

namely for a function f define on a set X taking non extended real valued functions all

these 5 conditions are equivalent to each other. And if assume any one of them then other

will  also hold.  So,  a function which satisfies any one of these conditions  is  called a

measurable function.
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 So, a measurable function on X taking extended real valued is a function which satisfies

any one of those 5 conditions as stated here. So, these are going to be important class of

functions for us to deal with.

Let us look at some examples. The first example is that of what is called the indicator

function of a set. So, let us look at what is called the indicator function of a set x. So, let

us take X any set 
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And A subset of x. So, we define a function called the chi of a this is a greek letter chi.

So,  lower case  of  X A function  on X taking 2 values  0 or  1.  So,  this  is  called  the

characteristic function or the indicator function. So, this function takes the value at the

adder a point X the value is 0, if X does not belong to A and at A, at the point The value

is one if X belongs to A. So, here is the set X here is the set A. So, on a it gives the value

one and on outside a it gives the value 0.

So, it is a 2 valued function it indicates. So, the points where it takes a value one is

exactly  the  points  in  the  set  a.  So,  this  is  called  the  characteristic  function.  So,

characteristic  function  or  the  indicator  function  of  the  set  A.  So,  this  is  called  the

indicator function of the set A and the claim is. So, let we want to look at. So, X is set S

is sigma algebra.
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 and we are got the indicator function a of the set A on X taking values. Of course, only 2

values. So, we consider it as a function in taking extended real values. So, we want to

know is it measurable. So, suppose the indicator function of A is measurable 

So, that implies, if I look at chi A inverse of the singleton point one that belongs to s, but

what is that value. So, what are the points where it takes the value one that is precisely A.

So, that is the set A. So, A belongs to S. So, if the indicator function is measurable then

we get a belongs to S conversely if a belongs to S we claim that chi of a is measurable.

So, for that look at chi a of chi a inverse of any interval i. So, what is that going to be the



inverse image of a interval is going to be equal to empty set if 0 or one does not belong

to the interval i because then there is no point which goes to the interval and it is equal to

it  is  equal  to  A if  0  does  not  belong  to  i  and  1  belongs  to  i  and  similarly  it  is  a

compliment if 0 belongs to i and if 0 belongs to i and 1 does not belong to i and is equal

to X if both 0 and 1 belong to i. 

So, in either case either it is empty set or it is a set a or a compliment or X. And all of

these are elements of the sigma algebra S. So, inverse images is of every interval is in S.

So, hence the indicator function is a measurable function. So, what we have shown is

that the indicator function is measurable. So, this indicator function which is defined as

one if X belongs to a and 0 if X does not belong to a. So, the characteristic function is

measurable if and only if the set a belongs to s.

So, these simplest example of measurable function, let us consider a linear combination

of the indicator functions. Suppose S is a function defined on X size and S of X is equal

to a i times the indicator function of a set a I at value added X i equal to 1 to 1.

So, look at sets a 1 a 2 a n subsets of X look at their indicator functions and take a linear

combination of them, a i times the indicator function of a i such a function is called a

simple function on X such a function is called a simple function on X. 


