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Lecture - 13 A
Characterization of Lebesgue measurable sets

Welcome to lecture number 13 on measure and integration. If you recall in the previous

lecture we have been looking at Lebesgue measure, Lebesgue measurable sets and its

properties.  I  will  continue  that  study of  Lebesgue measurable  sets  and its  properties

today itself. Will be (Refer Time: 00:40) looking at the translation invariance property of

the Lebesgue measure and then Lebesgue measurable sets, we saw we topological in ice

subsets of the real line.

(Refer Slide Time: 00:43)

So, let us recall that we are defined what is called the Lebesgue measurable sets and that

gaves give us the space the real line the Lebesgue measurable sets and the Lebesgue

measure.

(Refer Slide Time: 01:02)



So, this was called the Lebesgue measure space and the Borel sigma algebra of real line

the Borel subsets of the real line form a sub sigma algebra of Lebesgue measurable sets. 

So, these properties we had seen and now today what we are going to look at is the

following recall the on the real line there is a binary operation of addition you can add

real numbers. So, this operation can be used to transform subsets of the real line. So, let

us take a set E contained in real line and define what is called E plus x. So, E plus x is

defined as all elements Y plus x such that Y belongs to E.

So, it is the said E which is translated by an element x. So, the question is E belonging to

L, if E is Lebesgue measurable does this simply that E plus x is Lebesgue measurable

and similarly we will also look at the second question namely if E belongs to B R if E is

a Boral subset of real line does it imply E plus x belongs to B R .So, these are the two

questions will start analyzing. So, the importance of these two questions is the class of

Lebesgue measurable sets is it  invariant under translations and is the Lebesgue is the

class of Boral subsets invariant under the group operation of translation on the real line. 

So, these two questions we will answer in the first to start with. So, to answer the first

question let us recall that Lebesgue measure is nothing, but the restriction of the outer

Lebesgue measure. So, and the Lebesgue outer measure for real line is defined as the

infirmum of sigma lambda of intervals I i where these intervals form a covering of E is a

subset of union I i’s i equal to 1 to infinity and I i is are all intervals. And keep in mind

the remark we said you can choose these intervals I i is I j is to be open if necessary. So,



whether you take all possible coverings of E by intervals or all possible coverings of E

by open intervals both will give you the same value namely the Lebesgue measure of the

Lebesgue outer measure of the set E. 

So, let us start.

(Refer Slide Time: 04:02)

So, let us start with a set E which is Lebesgue measurable to show that E plus x is also

Lebesgue measurable. So, this is the question. So, to show that recall what is definition

of a measurable set. So, to show that for every subset Y of real line we should have

Lebesgue outer measure of Y is equal to Lebesgue outer measure of Y intersection E plus

x  plus  Lebesgue  outer  measure  of  Y intersection  E  complement  plus  x  E  plus  x

compliment sorry. So, that is what we have to show.

Now, let  us  start  observing that  we are given that  E is  Lebesgue measurable.  So,  E

Lebesgue measurable implies for every subset Y of real line, the Lebesgue measure of Y

is equal to Lebesgue outer Lebesgue measure of Y intersection E plus outer Lebesgue

measure of Y intersection E complement. 

Now, our aim is to transform this E to E plus x; that means, we should be looking at the

properties  of  the outer  Lebesgue measure of a  set  in  terms of  translation.  So,  let  us

observe. So, let us note that if a set E is covered by a union of intervals I j one to infinity,

that is if and only if E plus x is covered by union of the translated intervals that is I j plus



x j equal to one to infinity; that means, every covering of the set E gives a corresponding

covering of the set E plus x by the intervals I j plus x note that if I j is the interval I j plus

x also is an interval.

So, if E is covered by intervals I j we get a corresponding covering of E plus x by the

intervals I j plus x, and conversely given a covering of E plus x we can construct back a

covering  of  E by looking at  by translating  by minus x.  So,  this  property  obviously,

implies that Lebesgue measure of a set E is same as the Lebesgue measure of the set E

plus x. So, this observation implies that the Lebesgue measure of a set remains invariant

under translations. So, this is a property. So, this is a important property of the Lebesgue

outer measure we are going to use to conclude that if E is Lebesgue measurable than E

plus x also is Lebesgue measurable. 
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So, as we said E Lebesgue measurable implies for every subset Y we have got lambda

star of Y is equal to lambda star of Y intersection E plus lambda star of Y intersection E

complement.  And now observing that  Lebesgue measure  is  invariant  outer  Lebesgue

measurable  is  invariant  and  translations  we  can  write  these  as  lambda star  of  Y

intersection E plus x plus lambda star of Y intersection E complement plus x ok.

So, here we are using the fact that lambda star is translation invariants and now a simple

observation they will tell you that Y intersection E plus x is same as why intersection it is

it is same as Y intersection Y plus x intersection E plus x. So, meaning that if you take



intersection and translate that is same as translating and intersections. So, very simple set

theoretic property.

So, the first term here is equal to lambda star of Y plus x intersection E plus x and

similarly  the  second  one  will  give  you it  is  lambda  star  of  Y plus  x  intersection  E

complement plus x. So, that is using the fact that lambda star is translation invariant and

intersection translation is same as translation intersection they commute with each other

and now this property is true for every subset of Y.

So, i can the replace Y by Y minus x. So, implies replace Y by Y minus x we get this is

also equal to. So, lambda this property is true for every. So, let us replace. So, lambda

star of Y minus x is equal to lambda star of, Y plus x minus x. So, that is Y intersection E

plus x plus lambda star of Y plus x minus x. So, that is Y intersection E complement plus

x. So, in the our equation where replace Y by the set Y by Y minus x. So, this is true and

now observe lambda star of Y minus x is same as lambda star of Y we translating Y or by

x or minus x does not defect. 

So, we get for every subset Y lambda star of Y is equal to lambda star of Y intersection E

plus  x  plus  lambda  star  of  Y  intersection  E  complement  plus  x.  Now  a  simple

observations tells you that this set E compliment plus x is same as E plus x compliment. 

So, first take the compliment and then translate that is same as saying first translate and

then take compliment. So, is a purely a simple set theoretic exercise which you should be

able to verify easily. So, we get lambda star of Y is equal to lambda star of the first Y

intersection E plus x plus lambda star of Y intersection E plus x complement and hence

this implies that E plus x is Lebesgue measurable. 

So, we have proved the first property namely if you take a Lebesgue measurable set E

and translate then the translated set also is Lebesgue measurable.  So, another way of

saying the same thing is that the Lebesgue measurable sets are translation in variant they

remain the class of Lebesgue measurable sets is translation invariant. And we already

seen the Lebesgue outer measure is translation invariant so; that means, that the length

function is translation invariant on the class of all and Lebesgue measurable sets. So, this

proves  the  first  property.  So,  we  have  answered  the  question  that  if  is  Lebesgue

measurable then E plus x is also measurable. 
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Let us look at question that if E is a Borel set can we say that E plus x also is a Borel set.

So, to answer this question we need some a topological properties of the real line. So, let

us look at the topological property is what we are going to look at. So, the question is if

E is a Borel subset of real line, does that imply E plus x is also a Borel subset of real line.

(Refer Slide Time: 12:13)

So, for that let us observe consider the map. So, consider the map from real line to real

line  where Y goes  to  Y plus  x for  every  Y belonging to  y. So,  x  is  fix.  So,  this  is



translation. So, this is translation map from real line to real line, and the observation is

that this is this map translation is a homeomorphism.

So, what does homeomorphism means? That is it is 11 on two and both ways continuous

continuous; that means, this is continuous and the universe map because is one one on

two that also is continuous. So, this is an important property very basic, but yet important

property that we are going to use to prove that if E is Lebesgue measure if E is a Borel

set then E plus x is a Borel set. 

So, let us look at. So, consider. So, to prove our requirement let us consider the collection

say S. So, s is a collection of all subsets which are boreal and which have that required

property namely E plus x belongs to B R .So, look at all Borel subsets of real line which

sets that the translation translated set is also a Borel set.

So, we are going to prove two things about this one that the class of all open sets are

subsets of S and second thing will prove that s is a sigma algebra. So, once these two are

proved all open sets are inside S and S is a sigma algebra. So, this these two properties

will imply that the sigma algebra generated by the class of all open sets is inside S and

that is nothing, but the Borel sigma algebra. So, the Borel sigma algebra will come inside

as and that will prove the required property.

So, we have to only prove these two facts namely that if you take an open set then it

belongs to S; that means, if a taken open set and translate that should be a Borel set, but

that is again obvious by the fact that translation is a homeomorphism.
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So, if E contained in R is an open set then the set E plus x is also an open set. So, that is

also an open set. In fact, that is very simple property to an prove because if you take a if

E is open that rebury point there is a open interval inside E and the translated one will be

inside E plus x. So, that is easy to verify or one can simply verify by saying that E plus x

is an open map or translation is a homeomorphism.

So, this an open set. So, this is implies the first properties that all open sets are subsets of

S and the second thing that it is a sigma algebra. So, for that note empty set the whole

space are both open. So, they belong to s and second if I set E belongs to s that implies E

plus x belongs to s is a Borel set, but that implies this is sigma algebra. So, E plus x

complement is also a Borel set right because is a sigma algebra. So, must be close and re

compliments and now a simple observation that this set E plus x is nothing, but E plus x

compliment is same as E complement plus x. So, this is same as this. So, that belongs to

B R and that implies that E compliment belongs to E compliment belongs to s that is

same as saying E compliment.

So, the class s of subsets of Borel subsets of real line says that it translates are Borel sets

includes empty set the whole space it is closed under compliments and let us prove that

this is also closed under countable unions.

(Refer Slide Time: 17:23)



So, third property namely. So, let E n be a sequence of sets in S implies that E n plus x is

a Borel set in R and Borel sets being a sigma algebra that implies union of E n plus x

also belongs to B R, and hence now here is a simple observation that this set is same as

you first take the union and then take the translation It is same as first translating and

then taking the unions so, that belongs to B R .So, basically translation commutes with

all set theoretic operations that is observation we have been using again and again.

So, this belongs to B R .So, that implies union n equal to one to infinity E n is a setting s.

So, they approved. So, hence open sets are inside s a sigma algebra. So, implies that the

Borel sigma algebra generated by open sets which is the Borel sigma algebra is inside the

smallest sigma algebra generated by open sets namely the Borel sigma algebra must also

come inside s and that is the subset of B R .So, hence all are equal. 

So, this proves the second fact namely if E is a Borel set then its translated translation is

also a Borel set and once again it emphasize the use of the technique that we had called

as the sigma algebra technique namely you we wanted to prove that for every Borel set E

the translation is a Borel set. So, note. So, we have collected all the sets which have this

property and we proved two facts namely the open sets are inside this collection s and s

is the sigma algebra. So, that imply that the smallest sigma algebra generated by open

sets which is nothing, but the Borel sigma algebra also comes inside s. So, this technique

we will be using we have been using and will be using quite often it is called the sigma

algebra technique. So, we want to prove sum property about subsets of a set x collect



them together  and try to show that  those sets  form a that  collection form the sigma

algebra and includes the generators of the required sigma algebra.

So, we have proved that under translation the measurable sets the collection of Borel sets

are very well behaved and we get a translation invariant measure on real line that is the

length function.

(Refer Slide Time: 20:28)

So, this gives us the fact that lambda the length function on we are the Borel sigma

algebra of subsets of real line is the unique translation in variant measure such that the

length of the interval 0 comma 1 here is comma missing. So, 0 comma 1 is equal to one

and this is an very important property of the length function.

So, if you observe on the real line there is a notion of addition and we just now pointed

out that the group operation x comma Y goes to x plus Y is a continuous map . And one

can also easily check that x going to minus x that is the universe and the group operation

is also a continuous map that is summarize by saying that the real line is a topological

group. So, on the real line there is a topological structure, there is a metric ,there is a

topology on the real line there is a group structure on the real line and that two behave

very well with respect to each other saying that there the group operations x comma Y

goes to x plus Y and x goes to x inverse both are continuous maps.



So, one says such a thing is called it topological group. So, the real line with addition and

the usual metric the normal metric forms what is called it topological group and we are

shown on this topological group there exist a translation in variant measure on the sigma

algebra  of  subsets  of  it  there  exists  a  translation  in  variant  measure.  This  is  a  very

important fact and that can be analyze to what are called a locally compact topological

groups that on every locally compact topological groups there exist a invariant measure

because the group may not be Abelian. So, one has to make a specific thing there against

a left invariant or a right invariant measure on every locally compact Abelian group, and

that plays important role in doing analysis on such groups. So, we just a pointer that you

may come across in your other courses in higher studies of higher mathematics that on

every locally compact topological group there exist a invariant measure and that actually

is called hour measure on the topological group.

So, Lebesgue measure on the real line is an example of harm measure on the locally

compact topological group, real line under addition and the usual multiplication usual

metric space topology. So, these were the properties of Lebesgue measurable sets these

have being groups structure.

(Refer Slide Time: 23:30)

Now, let us look at properties of topology of the Lebesgue measurable sets with is set to

topologically nice subsets of the real line. Namely topologically nice sets are open sets



and closed sets. So, will prove will actually analyze and characterize measurability of

sets in terms of open sets and closed sets.

(Refer Slide Time: 23:55)

So, this is the precise theorem that we are going to prove namely if E is any subset of the

real line then the following statements are equivalent saying that i a set E is Lebesgue

measurable is equivalent to saying that for every epsilon bigger than zero, there exists

and open set g lower epsilon such that E is a subset of G epsilon; that means, that open

set includes E and the difference between the two sets has got outer measure small so;

that means, there is a little difference between a Lebesgue measurable set an open set

which covers it.

So, we will show that for every a set E is Lebesgue measurable if and only if for every

epsilon bigger than 0, there exist an open cover of it such that the difference between the

cover and the set. So, lambda star of g epsilon minus E is small and will show that this is

equivalent to saying that there exists a g delta set g such that the set includes E and the

difference such got measure 0 a set G delta set what is the Gdelta set a G delta set is

nothing, but intersection of open countable intersection of open sets. So, subset of the

real line or any metric space which are countable intersections of open sets are called G

delta sets. So, let us prove this theorem. 

So, saying that these three statements are equivalent is saying that if one of them holds

than the other one also holds. So, what we are going to do is we will assume one and



show that one implies two and then will show that statement two if you assume statement

two that implies statement three, and if you assume statement three then that implies one

and that will implied that all these statements are equivalence. So, if one of them is true

then the  other  two statements  are  also true.  So,  that  gives  you a characterization  of

Lebesgue measurable sets in terms of open sets or g delta sets.

So, let us prove this theorem. So, will start with looking at. So, let us assume.
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So, let suppose the statement one holds. So, that is E is Lebesgue measurable to show to

and that is for every epsilon bigger than zero there exist a set g epsilon open such that g

epsilon includes the set E and the Lebesgue outer measure of g epsilon minus the set E is

less than epsilon. So, this is what we have to show.

So, let us start with something this is regarding outer measure. So, let us start looking at

the set E. So, let us first suppose E is such that E is Lebesgue measurable. So, let us

suppose that Lebesgue measure of E is finite. So, what is Lebesgue measure of E recall

Lebesgue measure of E is same as its outer Lebesgue measure with is same as infimum

over sigma lambda of I j  one to infinity where the set E is covered by union of i js

intervals and each i j open. So, recall we had made a observation that in the definition of

Lebesgue outer measure you can assume that all the intervals involved are open.



So, now. So, let us fix be fix and says this number is finite and it is the infimum. So,

when the definition of infimum there exists recovering. So, the resists intervals j’s such

that E is contained in union of Ij’s, each i j open and we have got the property namely

lambda star of E which is same as. So, lambda star of E which is same as lambda of E

because it is measurable plus the small number epsilon is bigger than sigma lambda of I j

j equal to one to infinity right.

So, and that implies. So, this implies.
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So, note lambda star of E is  finite.  So,  this  is finite quantity. So,  that  implies  sigma

lambda of i j j equal to one to infinity is finite. So, all the sets iI have got. So, this implies

that if i take quite look at lambda star of union I j ,j equal to 1 to infinity that will be less

than or equal to summation j equal to 1 to infinity lambda of i j by the sub additive

property of the length function and that is finite. So, this set union of i j’s is a set of finite

outer measure.

So, let us define. So, put g epsilon to be the set which is union of I j’s and now let us note

that first of all G epsilon is open why it is an open set? bBcause each i j is an open

interval. So, a countable union of open intervals is an open set is open and E is inside

union of i j’s. So, E is contained in g epsilon right.



So, we have got the required property that we have got a cover of E by an open set and

let us note and what is the difference. So, lambda star of G epsilon minus E, now note g

epsilon is an open set. So, it is a Borel set. So, it is a Lebesgue measurable set and E is

given to be Lebesgue measurable and it is subset of if it and everything is finite that we

are just now observed. So, we can say this is equal to lambda star of g epsilon minus

lambda star of E. So, here we are using the finite additive property of the length function

and lambda star of G epsilon that is here is that is same as lambda star of union I j

because j epsilon is union i j minus lambda star of E and that is less than or equal to

sigma by sub additive proper countable sub additive property one to infinity lambda star

of i j minus lambda star of E and that by our choice of our intervals i j’s if you recall this

was the choice so; that means,  lambda star of the summation minus this is less than

epsilon

So, which is less than epsilon. So, lambda star of g minus g epsilon minus E is less than

epsilon so; that means, what; that means, we have proved the required property when

lambda star of E is a finite set.
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So, thus if lambda star of E is finite than 1 implies 2. Let us remove this condition and

that condition here is a step where is a important step we should keep in observation that

we first proved a property about the length function for finite sets of finite measure and

now we are going to extend this using the fact that lambda is sigma finite



So, whenever you want to one wants to prove a property about the length function or

about sigma finite measures, many a times it is easier to prove it when the underline set

is of finite measure and then extended to sets general sets of sigma finite measure.


