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Lecture - 12 A
Lebesgue Measure and It’s Properties

Welcome to lecture 12 on Measure and Integration. If you recall the last time we looked

at the extension of a measure from an algebra to the sigma algebra generated by it and

slightly beyond the class of all outer measurable subsets. Today we are going to look at

some special applications of this a particular case of that extension theory for the real

line  and  that  is  the  topic  for  today’s  discussion  namely  Lebesgue  measure  and  its

properties. 
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So, for the extension theory we are going to applied for the case x is equal to real line,

the set is the real line the algebra a means algebra generated by all intervals in the real

line and mu on this algebra is the length function that we are defined and we had seen

that the length function on the algebra generated by all intervals is a accountably additive

set function.  The outer measure induced by this length function which is denoted by

lambda  star  is  on  all  subsets  of  the  real  line  and that  is  called  the  Lebesgue  outer

measure. So, the outer measure induced by the length function is called the Lebesgue

outer measure.
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Let us just look at what is the Lebesgue outer measure for is subset of the real line. So, if

you recall we defined it as outer measure of a set E is look at all possible coverings on

the set E by elements in the algebra, but here the algebra being algebra generated by

intervals it is finite disjoint union of interval. So, we can write this lay outer Lebesgue

measure as the infimum over summation lambda of the intervals I where the intervals I i

is form a covering of the set E and these intervals are pair wise disjoint.

So, lambda star of E is the infimum of the sums of the lengths of the intervals which

form a covering of E, and we can take this intervals to be disjoint because if not then you

can make them disjoint. So, that is the Lebesgue outer measure for a set E. The class of

all  Lebesgue outer  measurable  sets,  lambda star  measurable  sets  is  called  the  sigma

algebra  of  Lebesgue  measurable  sets.  So,  the  sets  which  are  outer  measurable  with

respect to lambda star is called with respect to lambda star is called the sigma algebra of

outer  measurable  or  Lebesgue measurable  sets  and is  denoted  by  L suffix  R just  to

indicate L for the labesgue and R for the real line, in case there is no confusion we will

just denote LR by simply L, so is the class of all Lebesgue measurable sets.
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If we recall we had also defined the sigma algebra or Borel subset of real line and that

was the sigma algebra generated by all intervals and A being the algebra generated by

intervals. So, the sigma algebra generated by in finite disjoint union of intervals is same

as the sigma algebra generated by all intervals and that is same as the definition of the

Borel sigma algebra of the real line. So, this is the properties we have already seen. So,

the length function in particular is also a define for all Borel subsets, because the sigma

algebra generated by A is inside the class of all outer measurable sets that is L.

So, we have got  that  s of a  there is  a  Borel sigma algebra is  inside the class of all

Lebesgue measurable sets. So, for all Borel subsets the notion of length is defined. So,

this is called the Lebesgue measure. So, let us just summarize what we are we are saying

we are saying that the extension theory when applied to the particular case of the real

line gives us the notion of length for a class of subsets of the real line which are nothing,

but the class of outer Lebesgue measurable sets and that includes the class of all Borel

subsets. So, that is also the gives us the notion of length for all Borel subsets of the real

line.

So, the triple are Lebesgue measurable sets  the length function I as extended by the

extension theory this triple is called the Lebesgue measurable space. So, the extension

theory applied to the real line gives us the notion of the Lebesgue measurable space and

sh it extends the notion of length from intervals to the class L of all outer Lebesgue

measurable sets.
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Let us is recall that the sets Borel subsets form a subset of class of all Borel sets is a sub

class of the class of all Lebesgue measurable sets and of course, Lebesgue measurable

sets is a sub class of all subsets of real line. So, the question is can be say something

more regarding this 3 class is namely Borel subset, Lebesgue measurable sets and P R.

So, let us observe which we have done during outer measure that Lebesgue measurable

sets are characterized by the Borel subsets of the real line union the null sets. So, what

are the null sets:? Sets in the R subsets of R sets that an is contained in a Borel set of

measure 0 or equality one can also definite as sets of outer Lebesgue measure 0. So, B R

is a subset of L we know that outer measure 0 sets also measurable. So, this and we set

this class is nothing, but this form the sigma algebra and that is equal to the Lebesgue

measurable sets.

So; that means, the B R union N is equal to L. So, all null sets are p[art of L, but we want

to characterize what is the relation between B R and L and what is the relation between L

and P R. So, at present we only know that the Borel sets all subsets of all Lebesgue

measurable sets which is a subset of P R. To say something more we need to look at what

is called a special subset of the real line called Cantor’s ternary set.
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So, we are going to discuss spend some time on a special subset of real line which is

called Cantor’s ternary set. And Cantor’s ternary set is an example of a set which is very

nice  properties  and it  is  useful  both  from the  technological  point  of  you as  well  as

measure theoretic point of you.
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So, let us look at what is called Cantor’s ternary set. Ternary it is called can Cantor’s

ternary set because it was given by the mathematician George Cantor, first defined by

George Cantor and ternary set because it involves ternary expansions of real numbers. 



So, what we are going to do it  is  a construction we are going to  construct  Cantor’s

ternary set. So, as a step 1 latest look at the interval 0 to 1. So, well first describe this

process of Cantor’s ternary set construction and then will analyze its properties. So, what

is the first step? The step is divides into 3 equal parts. So, that is 1by 3 and 2 by 3 and

remove the middle open position. So, this operation is removed from the interval 01. So,

what it gives it gives as 2 peas is 0 to 1by 3 and from 2 by 3to 1. So, it gives us 2 close

interval. 

So, at the first step at the first stage having remove the middle one-third of the closed

interval  01 middle one-third open interval  we get the store.  And now we repeat  that

process again with these to sub intervals. So, from each of this subintervals remove the

middle one-third portion.  So, that is middle one-third is 1 by 9, 2 by 9 and here the

middle one-third will be equal to 7 by 9 and 8 by 9. So, this is a middle one-third portion

which we are going to removed the second stage. So, that will give us four subintervals

and we continue this process. 

So, eventually something will be left. So, continue. So, question is what is left; what is

left is called Cantor’s Ternary set. So, let us analyze and let us note this set Cantor’s

ternary  set  by  the  let  us  see.  So,  how do we mathematically  set  this?  So,  that  is  a

question. So, for that start with the first stage that is A 0 that is the closed interval 0 1.

After having perform the first stage what is left i write it as A1. So, that consists of 2

disjoint intervals 0 to 1 by 3 and 2 by 3 to 1. So, it consists of 2 disjoint intervals thirds

write them as at the first stage one union the second one first stage the second one ok.

So, this portion is the first interval and this portion is the second interval there is I11 and

this one is I12. So, at the second stage will be left with four disjoint closed intervals. So,

let us write them as union I second stage j, j equal to 1 to 4. So, that is going to be 2 raise

to power 2; and let us see what will be at the end stage if you continues prove of this

process at the end stage how many intervals will be here. So, there will be intervals how

many of them we start with one at the next stage 2, at the next stage 4 and so on.

So, they will be disjoint intervals j equal to 1 to 2 to the power and the repeat 2 to the

power and closed subintervals of 01, let us write them as I n j. So, these are the intervals.

So, what is An? A n is the union of those intervals which are left at the stage at the end



stage and what you want and we continue this process we want what is c. So, how do we

write mathematically c?
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So,  the  Cantor  set  we  can  write  it  has.  So,  the  Cantor  set  C  we  can  define  it  has

intersection of A ns n equal to 1 to infinity right.

So, each A n is a subset of the previous one right. So, let us write what is left eventually

as intersection of all this A ns. So, this is what is called Cantor’s Ternary set. So, let us

make some observations about this observations about this Cantor’s ternary set, the first

observation is that the end points of the open intervals removed are in C say for example,

0 is. So, 0 is not removed is not going to be removed one is not going to be removed at

the first stage we removed the open middle one-third. 

So, 1 by 3 is not going to be removed 2 by 3 is not going to be removed and it the next

stage 1 by 9 will not be removed 2 by 9 will not be removed and similarly 1 by 3 we

already listed then 7 by 9 will not be removed 8 by 9 will not be removed and so on will

not be. So, for example, this points will not be removed they will stay in this process of

removing middle one-third open interval from each some interval at every stage.

So; that means,. So, thus the class C the sets C is a non empty set it is non empty is non

empty.  So,  that  is  first  observation  there  is  something  left  behind  and  the  second

observation we want to show that in fact, C is uncountable that it is an uncountable set.



So, how do you prove c is uncountable, what we are going to do is we are going to define

a map from the closed interval 01 to C. So, to prove this will define a map with is 11;

will define a 11 map from 01 to the Cantor’s ternary set and that will prove that the

cardinality of the set C is at least as much as 01. And c being a subset of 01 it cannot be

more than that of 01. So, cardinality will of c will be same as cardinality of 01 that may c

memories strange a observation to you that from c we have removed from the interval 01

we have removed so, many pieces and still what is left is as much as the points in 01. So,

this these are properties of infinite sets it will they are the characterizing properties of

infinite  set  the  interval  01  is  an  uncountable  set,  and  from  that  we  are  removing

subintervals and still what is left behind is as much as 01.

So, let us prove this fact namely that there is a one to one map for this. So, it for this let

us start let us take a point x belong into 01 and consider its binary expansion. So, what is

the binary extension? The binary expansion of a point n 01 is written as. So, x can be

written as point a 1 a 2 a 3 a n and so on.
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We are each a n is equal to 0 or 1. 

So, that is a binary expansion of every pint essentially the idea is that the intervals 01 can

be divided into 2 parts name first part as 0 second part as 1 and c at each stage what

where it lines. So, that is 011 and let us assume see there are 2 different ways of writing



for some points there are 2 different ways of writing binary expansions. So, will fix one

of the ways and say there is a unique binary expansion for every point in 01.

So, will fix that binary expansion process and now what we do is the following construct

a point y with ternary expansion be with generally expansion. So, y is equal to point b 1

b 2 and b n where for every n b n is  nothing,  but  2 times a n.  So,  a in  the binary

expansion look at the a nth place either it will be 0 or 1 dabble it and call that as b n. So,

b n is twice as much as a n. So, each b i is either going to be 0 or it is going to be 2.

So, this is the ternary expansion. So, note y belongs to 0 1 because it is dash is dot b 1 b

2 b 3 so on, so no integral part. So, it is going to be part of its a point in 0 1 and it has in

the ternary expansion the only numbers that come r 0 2 times a n a n is 0 or 1 it is 0 or 2.

So, in the ternary in expansion of y which is in 0 1 only 0 or 2 appear that implies that y

belongs to C; because in the construction of the Cantor ternary sets we have remove the

middle one-third. So, in the ternary expansion the number one is not going to appear. So,

each one is. So, this is a part of. So, this is observation we make that starting with a point

x belong in to 0 1 with binary expansion a 1 a 2 a n construct a point y. So, send it to the

point y. So, this x is sent to the point y which is again in 0 1. In fact, it belongs to. So, let

us i more specifically it belongs to C.

So, we are got a map from 0 1 to C and the claim is that this map this is it is 11 and that

is obvious because for every point x we got this binary expansion a 1 a 2 a 3 a n the

unique binary expansion. So, if you take to different points x 1 and x 2. So, let us write

try to write this mathematically that this is.
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So, let us take a point x 1 with binary expansion a 11, a 1 2 a 1 n and so on.

So, let us take another point with binary unique binary expansion that we have fix the

methodology. So, a 2 1 a 2 2 and a 2 n and so on and x 1 not equal to x 2. So, that implies

if x 1 is not equal to x 2 that implies the release some stage and not such that a 1 n

naught will not be equal to a 2 n naught and that implies that 2 times a 1 n naught will

not be equal to 2 times a 2 n naught and that is this is b 1 n naught and this is called that

be 2 n naught; that means, y 1 if we have y 1 that is point b 11 b 1 2 up to b 1 n and so on

and y 2 is the other point a image of x 2. So, that is b 2 1 b 2 t2 b 2 n and so on then So,

if this is so, then y 1 is not equal to y 2.

So; that means, this process of a sending x taking x with binary expansion as this and

constructing y with ternary expansion is this. So, if send x to y this gives us a map from 0

1 to c which is 11 and hence. So, this implies as a consequence.
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So, hence the cardinality of C is same as cardinality of 0 1, and if you recall cardinality

of  a  0  1  that  is.  So,  let  us  write  this  implies  that  C is  uncountable  because  0  1  is

uncountable. So, thus C is an uncountable set. So, this is followers from work instruction

that she is uncountable set. So, this is follows are construction that C is an countable set.

In fact, let us try to now calculate. So, note that C which is equal to intersection of a ns

implies that for every n, C is a subset of A n and what was A n? That was a disjoint union

of intervals I and j j equal to 1 to 2 to the power n right and at the end stage what will be

the length of each where the length of each I n j.

So, what is the length of the intervals which are left at the end stage that is one over? So,

let  us just looked at the construction at  the first  stage when we removed 2 at a 1, 2

intervals were left each of length 1 by 3. So, this is 1 by 3 this is 1 by 3 this is 1 by 3 and

this is 1 by three. So, 4 travels at the second stage of length 1 by 3. So, at the end stage

how many 2 an intervals of each of length how many will be left that 2 to the power n

intervals each of length how much, here the length of each I n j. So, will at the second

stage it is 1 by 3 first second stage is 1 by 3 and. So, end stage will be one over. So, it

will be 1 over 3 raise to power 2 two n minus 1 right.

So, that will be the length of each one of them and there are 2 to the power n of them. So,

what is the total length? So, sigma lambda of I n j equal to j equal to o1 to 2 the power n.

So, that is 2 to the power n intervals each as got the same length. So, divided by 3 raise

power 2 raise power n minus 1 and observe that this number goes to 0 rights raise 2 to

the power n by 1 or 3 raise power n that goes to 0 as n goes to infinity.



So; that means, what; that means, that C can be covered by for every n by 2 to the power

n intervals whose length is this, and that can be made as small as a want so; that means,

that the outer Lebesgue measurable.
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So, lambda star of c  is  equal  to 0 right  because what is  lambda star of E? It  is  the

infimum of the sums of the intervals which cover the set c and we are here we are just

now show on that C is contained in A n which is a final decision of intervals and the total

length of these interval is becoming smaller and smaller ok.

So, that is that length of C. So, that implies that C is a lambda star null set hence C

belongs to is a Lebesgue measurable set. And not only that C is Lebesgue infect what we

know is something more it if E is any subset of C then that implies that lambda star of E

also equal to 0 because lambda star is more not on and that implies that E also belongs to

L.  So,  that  is  hence  all  subsets  of  C power set  of  C is  a  sub subclass  of  Lebesgue

measurable sets and of course, Lebesgue measurable sets are a subset of power set of real

line now, but C is  uncountable and R is  uncountable.  So,  what does is  implied;  that

means, this implies that L has as many elements as P of R.

So, what is the meaning of this has as many elements as P R that is same as saying the

cardinality; if you know what is cardinality, cardinality of L is same as the cardinality of

the power subset of real line and if you know that the cardinality of real line which is the

will be called as cardinality of continuum is the noted by small letter c. So, and this is



denoted by 2 to the power c. So, there if you look at so, that what does that prove. So,

that proves that if you look at from the cardinality point of you, if you look at how many

elements are there in the class of all Lebesgue measurable set then it says cardinality of

Lebesgue measurable sets is as much as the cardinality of all subsets.

So, if you look from the cardinality point of you, you cannot say that the class of all

Lebesgue measurable sets is a proper subset of the class of all subsets of the real line so,

but that does not also imply that all subsets of real line are Lebesgue measurable. So, the

question still remains and decided whether the class of all Lebesgue measurable sets is a

proper sub class of all subsets of all real line. So, to decide this question is a, but difficult

and leads to sum fundamental question in set theory.

So, let us look at. So, what where shown this now let us just recapitulate that lambda star

of c is equal to 0 and that says that a power set of C is subset of L.
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And hence there are at least as many elements in L as 2 to the power C.
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So, that is a cardinality of the continuum. So, so we get cardinality of L and power set is

same both of got same cardinality. So, question still remains is L a proper subset of P R.

So,  if  you  recall  the  answer  to  this  question  is  related  to  some of  the  fundamental

questions in set theory.
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So, if you recall we proved what is called Ulams theorem we did not prove it really we

mentioned what is called Ulams theorem and I said that one can read a proof of this in

the textbook that we have mentioned and that is statement of the Ulams theorem says

assuming continuum hypothesis. Lebesgue measurable cannot be extended to all subsets

all of real line there is something called Continuum Hypothesis it set theory. I will not



explain at  this  stage what is  continuum hypothesis  because will  be going slightly of

stream, but it is worth mentioning hear that the set theory is based on certain axioms. 

So, whatever modern mathematics we are doing is based on axiomatic set theory and

there is a which has some kind of some axioms on which we are we can deal with set

theory, but there is something called continuum hypothesis which relates to the subsets

of real line and so on and that is not part of the axioms of set theory that is why it is

called  continuum  hypothesis.  Some  people  believe  in  continuum  hypothesis  and  do

mathematics according to that and some people do not believe in it.

So,  if  you assuming continuum hypothesis  and Ulams theorem says  that  you cannot

extend the means not all subsets of real line or measurable. Another result which one can

use which is again not part of the axiomatic set theory is the following which says that

supposing you a assume what is called axiom of choice.  Axiom of choice is another

axiom which is not part of the axiomatic set theory and one can either accepted part of

set  theory  and  do  mathematics  or  do  not  accept  part  of  it  and  do  mathematics  the

mathematician those who accept axiom of choice they are supposed to be doing.

What is called non constructive mathematics because there are some existence theorems

which assume axiom of choice helps improving some theorems which are existentially in

nature. For example, proving that every vector space has a base is a requires the need of

using axiom of choice you cannot prove it if you do not assume axiom of choice there

are many results in mathematics in which are which use axiom of choice and which are

not true, if you do not assume maxima of choice.


