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Extension of Measure

Welcome to lecture 9 on measure and integration. As you recall we have been looking at

classes of sub set, sub set X called semi algebra, algebra, sigma algebra and so on. And

then we all also looked at set functions defined on these classes, which is a properties.

So, in particular, we define the concept of measure. A measure is a set function defined

on a collection of sub sets; such that the measure of mu of the empty set is equal to zero,

and mu is countably additive. Today we are going to start the process which is called

extension  process.  So,  the  topic  for  today’s discussion  is  going  to  be  extensions  of

measures, a basically the question arises from some properties on the real line.
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Let us look at mathematically the question. We know that notion of length is defined for

all intervals. So, the question is, can the notion of length be extended to arbitrary subsets

of the real line; that means, can we define the notion of the length for an arbitrary sub set

of the real line. Of course, you should be compatible with the definition of the length for

the interval. So, the need for such, and extension one; of course, is purely a mathematical

curiosity that we have the notion of length for an interval. Can we define it for a arbitrary



sub set. Another reason which is more important is that. It arises from some problems, in

Riemann integration the concept of Riemann integral  which is defined for a class of

functions fails to satisfy some nice properties, like you if a function is the fundamental

theorem of calculus, does not hold for Riemann integrable functions

So,  in  order  to  remove  those  difficulties  on  started  for  looking  for  an  extension  of

Riemann integral, and that let though the problem of extending the notion of length from

a class of sub sets; that is intervals to all sub sets possible. and if you are interested in

looking at more details about that why Reimann integral should be extended to a wider

class of functions, and how that leads to the concept of extending the notion of length to

arbitrary sub sets, read chapter one and two of the text book, that we have mentioned

earlier; namely an introduction to measure and integration by myself Inder K Rana.
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So, let us start with the question of what is an extension. So, let C 1 and C 2 be two

classes of sub sets of a set X, and let us assume C 1 is a sub set of C 2. We have to

measures two set functions mu 1 and mu 2. Mu 1 is defined on C 1, and mu 2 is defined

on the collections C 2. So, mu 1 and mu 2 are set functions, as mu 1 defined on C 1 and

mu 2 defined on C 2 with the property that mu 1 on C 1 is same as mu 2 for sub sets of C

one. So, mu 1 and mu 2 agree on subsets of C 1. Recall C 1 as sub collection of C 2. So,

in such a case we call mu 2 is an extension of mu 1. So, on C 1, which is a smaller class



mu 1 and mu 2 are same. So, and mu 2 is defined on a bigger class; that is C 2. So, we

say C 2 or mu 2 is an extension of the measure of the cresset function C 1
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So, the problem is given a measure mu. We start with a measure mu on a semi algebra C

of sub sets of a set x. We want to show you that there exists a unique extension to a

measure mu tilde a of C, the algebra generated by it. So, this is going to be our first step

of extension theory; namely given a measure on a semi algebra. We are going to extend it

to  a measure on the algebra generated  by that  semi algebra.  So,  let  us see how this

process is carried over. So, recall that a set E in the algebra generated by a semi algebra.

We are characterized such sets can be given by a representation E is equal to union i 1 to

m E i. So, every set in the algebra generated by a semi algebra is a finite union of sets,

from the semi algebra, and in addition their pair wise disjoint. So, this was the result we

had proved that the algebra generated by a semi algebra is nothing, but all finite disjoint

union of sets in the semi algebra. So, let us take any set E in the semi algebra.
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So, we define mu tilde of E to be a sigma i 1 to n mu of E i and the claim is that, this is

the unique extension which we are looking for. So, let us see how do we do it.
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So, we have got mu on C, and this is a semi algebra. So, we define mu tilde on the

algebra  generated  by C So,  this  is  algebra  generated  by C So,  we want  to  define  a

function here, a set function which should look like an extension. So, if E belongs to F of

C, then we know this is set E looks like a disjoint union of element C i i equal to 1 to n

for sum n C, i belonging to C. Now why we defined it the way we have defined mu tilde.



See if mu tilde of E is going to be defined, and it is going to be measure on the algebra F

of C, then we know that every measure is also finitely additive.

So, by the finite additivity property of mu tilde, which we have not yet defined, but the

finite additivity property will say that this should be equal to mu tilde of the union C i i

equal to 1 to n, and this being finitely additive. We should have i equal to 1 to n mu tilde

of C i, but mu tilde is going to be an extension. So; that means, mu tilde on C i is as same

as mu on C i. So, this is same as 1 to n of mu of C i. So, that actually fixes, what is going

to be the definition of mu tilde of e. So, if E is a finite disjoint union of elements which is

C i’s, then mu tilde of E must be given by this, and that also shows the uniqueness of the

definition of mu tilde. So, mu mu tilde should be defined by this. It is necessary and we

will show that actually this definition works also. So, let us prove this property that mu

tilde.
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So, first we want to show that mu tilde is well defined. So, what does that mean? So,

suppose E is a set which is in F of C, then we know that E can be written as a finite union

of set C i’s finite this disjoint union of set C i in C, but it is possible, it can have some

other representation. So, it is possible the results were representable as j equal to 1 to m

of some sets D i where C i is belong to C, and D j’s also belong to, D j’s also belong to C

So, to show them, because our definition depended on the representation. So, we should

show that mu of C i summation i equal to 1 to n is same as summation mu of D j, j equal



to 1 to m. So, this is we should show, then only we can claim if you can able to show

this, then only we can claim that our function mu tilde a is well defined

So,  let  us  show  this.  So,  now,  note,  because  E  is  given  by  this  two  different

representations. So, i can write union C i i equal to 1 to n, also as union C i intersection

union D j’s; j equal to 1 to m. So, that is equal to sigma. sorry that is equal to union i

equal to 1 to n union j equal to 1 to m, C i intersection D j, and similarly union D j’s j

equal to 1 to m is also representable by the same way, because the two sets are same. So,

it is same representation right.
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So, now let us compute. So, let us compute sigma mu of C i i equal to 1 to n, I can write

it as sigma i equal to 1 to n. Now this mu of C i is this disjoint union of C i intersection D

j; that is why, where we are using this representation that you just now wrote j equal to 1

to m, and this is a disjoint union C i is belong to the semi algebra, D j is belong to the

semi algebra. So, this intersection belongs to the semi algebra, and their unions, is C i

which is also in the semi algebra, and mu is a measure on the semi algebra. So, this is

also finitely additive. 

So, it is i equal to 1 to n. So, I can write this sigma equal to j equal to 1 to m mu of C i

intersection D j. similarly we can also write j equal to 1 to m mu of D j to be equal to this

is summation j equal to 1 to m, and mu of D j. So, that I can write as union of D j

intersection C i i equal to 1 to n. And now again by finite additivity property this is j



equal to 1 to m sigma i equal to 1 to n mu of D j intersections C i.  So, look at this

equation one, look at this equation two, one and two imply that sigma i equal to 2 to n

mu of C i is equal to sigma j equal to 1 to m mu of D j

So, that says. So, implies mu is well defined. So, what we have shown is the following,

that we take any set in the algebra generated by the semi algebra. So, that has got a

representation in terms of the elements of the semi algebra. So, any element E in the

algebra generated by the semi algebra can be represented as a finite disjoint union of

elements in the semi algebra; say C i. So, pick up any such representation and define mu

tilde of E to be equal to sum of and mu’s of this P C C i sigma i equal to 1 to n. It does

not matter which representation you choose, you will always get the same sum. So; that

means, mu tilde of E is well defined. So, now, let us look at the next property, namely

that mu tilde which is defined on the algebra, generated by the semi algebra is finitely

additive. So, let us move that property.
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So, we want to prove that mu tilde. So, mu tilde is finitely additive. So, to prove that

what we have to show. So, let E we written as a union of E j’s, j equal to 1 to n, where

each E j belongs to the algebra generated by C, and of course, E also belongs to the

algebra generated by C. So, we want to show that E mu tilde of E is equal to summation j

equal to 1 to n mu tilde of E j. So, this is what is to be shown. Now to show any such

property we have to go back to the definition of mu tilde of any set. So, since E belongs



to the algebra generated by C; that implies. Let us write each E j, E j belongs to the

algebra. So, each E j can be written as a disjoint union of E j, and say k, k equal to 1 to n

j, where E j k belong to C for every j n k. 

So, every element E j is in the algebra generated by C. So, it must be a finite decision to

enough elements of C. So, that implies that the union E j, j equal to 1 to n is equal to

union j equal to 1 to n union k equal to 1 to n j of E j k and this is my. So, this is our set

E,  E is  equal  to  union.  So,  we have  represented  E as  a  finite  this  disjoint  union of

elements  of  C.  So,  that  implies  that  mu  of  E  mu  tilde  of  E,  I  can  choose  any

representations.  So, n particulars  this.  So,  it  is  equal to summation j  equal  to 1 to n

summation k equal to 1 to m j of mu of E k j.
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And now using the finite additive property of mu, we will write this. So, this is equal to

look at this sum. So, look at this sum that is nothing, but j equal to 1 to n mu tilde of E j

right; that is my definition, because E j is union of l k j over k. So, by definition I can

take that representration right. This is equal to this. So, that says mu tilde of E is equal to

this. So, hence mu tilde is finitely additive. So, we have proved that mu tilde is finitely

additive. Now uniqueness we have already shown. 

So, thus we have shown that a measure which is defined on a semi algebra, can be in a

unique way extended to the algebra, generated by a. And basically the idea is, because

every element  intuitively  keep in  to your mind that  mu of a set  is  the size.  So,  any



element in the algebra generated by the semi algebra is a union of disjoint basis in the

semi algebra, and size of each of them is known. So, the size of the union must be equal

to some of the sizes of the individual pieces, because they are disjoint. So, that was the

idea and that helped us through extend a measure from a semi algebra to the algebra

generated by it. So, that is the first step of the extension theory. So, as a consequence the

length function can be extended that we have already shown length function,  can be

extended from the collection of all intervals to the collection of finite disjoint union of

intervals; that is the algebra generated by it right.

So, now we will go to the next step of the extension. So, we will start with a measure,

which is  defined on a algebra,  and we want to try to extend it  to the sigma algebra

generated by it.
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So, the next step in the extension theory is, can the length function, for example, we

would like to say, can the length function be extended to all sub sets of the real line. We

have done it from intervals to the algebra generated by intervals right. There is a theorem

by mathematician called S M Ulam, and that theorem was proved in 1930. It says that

under the assumption of continuum hypothesis, it is not possible to extend the notion of

length to all sub sets of real line, and this is a very important theorem. 

So, it uses two things; namely one is what is called continuum hypothesis. I will not go

in to the discussion of what is called continuum hypothesis at this stage. I would say that



one should read about this theorem from the text that we have just now mentioned, and

introduction  to  measure  an  integration.  So,  this  is  very  nice  and important  theorem,

which says as a consequence that it is not possible to extend the length function to all sub

sets of real line.
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So, the question comes, if we cannot extend. So, in general A given a measure mu on an

algebra of sub sets of X, we would like to extend it to a bigger class than A. It cannot be

done it for all sub sets any way, but let us try to intuitively follow our idea of measuring

the size of an object. So, intuitively given a measure mu on an algebra A, a collection of

sub sets of a set a. Now if is at X mu of a is the size of the set a, which you can measure

and given in a arbitrary, set E 1 may not be able to measure it size exactly using the mu,

but we can at least try to approximate right

So, let us define what is called the outer measure induced by a measure.
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So, let us take mu and algebra of sub sets of the set X a, and algebra of sub sets of the set

X and mu, a measure defined on it for any sub set E in X let us define what is called mu

star of e. So, what is mu star of E, what we do is, given the set e. So, here is the set E you

cover it by sets a i’s. In the algebra you cover it by the sets, in the algebra take a covering

of E by the sets a i’sin the algebra, and you know what is the size of the set a i. So, let us

take the size of the set A i and add up all the sizes. 

So, what do you think this sum will represent. This sum will represent in sums and the

approximate size of the set E. Of course, it depends on the covering A i and now what we

do is, we take the infimum of all this approximate sizes; that means, we take the infimum

of this numbers, over all possible coverings of the set E, and define that number as mu

star of E, and we will try to analyze what are the properties of this mu star of e. So, first

of all let us give it a name this, mu star of E is called the outer measure induced by mu.

Why the outer, because we are covering E right by sets. So, this things cover E we are

going, maybe we are going outside e. So, this is outer and measure,  because we are

trying to measure the size of this in terms of induced by mu, because in terms of the non

sizes mu

So, once again let  us recall  and look at  carefully what this  mu star is  given a set  E

arbitrary, sub set X in X cover it by elements A i whose size is you know. So, take a

covering of E by elements in the algebra. Look at the sizes of A i’s, add up all this; that is



the sum mu A i that is approximate size, and take the infimum of all this approximates

sizes. So, that we are going to call as a outer measure induced by so.
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The first property we want to say is mu star, is well defined. Well what is the meaning of

mu star is well defined. So, let us go back to the definition. This mu star is infimum of

some numbers right, and infimum of a sub set of numbers exist in the real line, if it is

non empty, and it should be bounded below. Of course, all this numbers are going to be

bounded below, because all are nonnegative number. So, it is bounded below by zero.

Why is this nonempty? Why is this collection non empty because a is an algebra. So, the

whole space belong to it. 

So, keep in mind a is an algebra and in the definition of an algebra, the whole space X is

an element. So, E is covered by X itself. So, and X belongs to the algebra. So, at least

there is one number in this collection over which you are taking infimums namely mu of

x. So, it is X non empty collection of extended real numbers. So, its infimum always

exists,  and hence  mu is  a  well-defined number  of  course,  it  could  be equal  to  plus

infinity. Keep in mind the numbers here; they are all extended real numbers. So, this is

the set is a collection of nonnegative extended real numbers, and their infimum always

exist, and infimum could be equal to plus infinity

So, we have shown that mu tilde is a mu star, the induced outer measure is well defined

the next property. So, mu star is a well defined set function on the class of all sub sets of



the set X, and we want to show some properties of it. So, the first property is mu star of

empty set is equal to 0. So, that is true, because empty set belongs to the collection a in

the algebra, and mu star of, there is equal to mu of a, and that is equal to 0 and for any

set, that is a non infimum of non negative numbers. So, this infimum has to be bigger

than or equal to 0. So, that first property is obvious second property, we want to check

that mu star is monotone. So, let us check that mu star is a monotone function.
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So, let us take let a and b be sub sets of X, and a sub set of b to show mu star of a is less

than or equal to mu star of b. Now what is mu star of a, this is in all this properties we

are going to use the definition of infimum critically. So, what is mu star of a. mu star of a

is defined as by our definition, it is a infimum over sigma mu of E i’s; say one to infinity

where this set a is contained in union of E i’s disjoint union, and of course, E i ’s belong

to the algebra right. And what is mu star of b; that is the infimum i equal to 1 to infinity

of mu of say F i’s, where b is contained a union of F i’s i equal to 1 to infinity disjoint

union, where F i’s also belong to the algebra a

Now, note if a is given to be a sub set of b. If a is sub set of b and b is covered by F union

j equal to, say going to infinity, then that implies a is also inside. So, this is also inside F

of j. So, what we are saying is, every covering of b is also a covering of a. So, and this is

the infimum over all possible coverings of b, and this is the infimum over all possible

coverings of a, and every covering of b is also a covering of a. So, here we are taking



infimum  over  a  larger  set,  and  here  we  are  looking  at  the  infimum over  a  smaller

collection of numbers.  And whenever  you take infimum over a  smaller  collection  of

numbers;  that  is  always bigger  than or  equal  to  infimum over  a  larger  collection  of

numbers. 

So,  that  is  a  simple  property  about  infimum,  if  you are  taking  infimum of  a  larger

collection, then that tends to be smaller than the infimum over a smaller collection. So,

that property implies that mu star of a has to be less than or equal to mu star of b. So, that

is purely a property of the infimum, over what collection you are taking every covering

of b is also a covering of a. So, coverings of b form a sub set of coverings of a, and hence

this property is true. So, that is the monotone property, namely mu star is monotone. Let

us look at the next property namely mu star is countably sub additive.
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So, we want to prove mu star is countably sub additive. So; that means, what to show.

So, what I have to show that, if a is a sub set of X and a is contained in union of A i’s, a

i’s is also a substitute of X, then we want to show that mu of a is less than or equal to

summation mu of A i’s. So, this is what is to be shown right. Now let us observe. So,

note we want to show one number mu of a is less than or equal to sum of these numbers.

If one of these numbers is equal to plus infinity, then; obviously, this property is true. 

So, note if mu of A i is plus infinity for some i, then clearly mu star of a is a number

which is less than or equal to plus infinity, which is at least one of the mu over i’s. So,



that is less than or equal to mu of mu, so everything about star. So, its mu star we are

looking. So, let  us just  write mu star, we are trying to prove that  mu star countably

additive.  So,  mu star  of A i  i  equal  to 1 to infinity. So,  what we are saying is,  this

inequality is obvious if one of the terms in this sum, is equal to plus infinity. So, let us

take the case when all of them are finite.


