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So, next step let us look at next step say that we may assume that both mu 1 and mu 2 are

totally finite. We are given mu 1 and mu 2 are sigma finite.
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So, next  step is  that  we may assume; mu 1,  mu 2 are totally  finite.  So,  what  is  the

meaning of saying we may assume? That if the statement; so, this is same as saying; if

the statement mu 1 of A equal to mu 2 of A; for every A belonging to S of C is true, when

mu 1, mu 2 are totally finite; then it will also be true; when mu 1, mu 2 are sigma finite.

So, that is the meaning of saying that we may assume that mu 1 and mu 2 are totally

finite. So, let us see why that is the case. So, let us take a set A contained in; so, what we

are given is mu 1 and mu 2 are sigma finite. So, mu 1, mu 2 sigma finite; imply I can

write X; mu 1 is sigma finite. So, I can write X as union of X i’s; i equal to 1 to infinity

where X i’s belong to C and mu 1 of each X i is finite. Similarly mu 2 is sigma finite; so,

I can write X as union some j equal to 1 to infinity; Y j where Y j’s are subsets in C and

mu 2 of each Y j is finite.
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But, then from both of these statements; I can write X as; so, this implies, we can write X

as union over i; 1 to infinity of X i’s, but that I can decompose into union of Y j’s. So, X

i; intersection Y j; I can write that.

So, I can write this as a decomposition of X into subsets X i intersection Y j; now what

we have achieved is the following, mu 1 of each X i was finite; mu 2 of each Y j was

finite, But now this implies note; that mu 1 of X i; intersection Y j is finite and mu 2 of X

i intersection Y j is also finite. So, now both mu 1 and mu 2 are finite on this p; so, in the

picture you can think of this as X. So, you divide; these are sets X 1, X 2, X i and so on



and then you also have sets of Y j’s. So, they are decompositions like this; so, this piece

is nothing, but X. So, this piece is Y j; so, this piece here is X i; intersection Y j. So, the

whole space is cut up into pieces; so, this is what this statement means, where each one

of them is finite.

And now let us note; so, here is observation. 
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So, note mu 1, mu 2 restricted to X i; intersection Y j are totally finite. So, what is the

meaning of this statement? They restricted; that means, if you look at the subsets on; that

is for every A contained in X i intersection Y j; A belonging to C, mu of A is finite; mu 2

of A is finite. And for totally finitely measures, we have already proved that; we have

already assumed that this statement is true. 

And we are trying to show it for our sigma finite. So, now for any set A; contained in X

mu 1 of A can be written as summation over i, summation over j; mu 1 of A; intersection

X i,  intersection Y j.  So, that is because A is equal to union over i,  union over j; A

intersection X i; intersection Y j. So, this is a countable disjoint union; mu 1 is a measure.

So, this must be true and now note that this A intersection; this is a set; in the set X i

intersection Y j; where mu 1 is finite and then there we know that there the statement is

true.



So, here A is contained in X of course, A belonging to S of C; so, the statement is true.

So; that means, what? So, by the assumption that statement is true for finite measures;

we conclude that this is same as A intersection mu 2 of A; intersection X i; intersection Y

j. And once again that is equal to mu 2 of A; so, here we use. So, a basic idea is for any

set, we can bring it to the finite pieces; there we know it is true and go back to the

original piece. 

So, this is the proof of the second step that we may assume without loss of generality that

our measures mu 1 and mu 2; both are finite. So, we have made two simplifications in

our proof; the first one being, we may assume that C is an algebra and second one that

mu 1 and mu 2 are totally finite.

So, what we want to prove now? So, we only are left with the case to prove that; if C is

an algebra; mu 1 and mu 2 are totally finite; defined on the algebra C. And if they agree

on C, then they will agree on the sigma algebra generated by C. So, that is the next step

we want to show. So, for that let us write; so, to prove the final step; let us write M to be

the class of all those elements of S of C, where mu 1 and mu 2 agree.

And what is the aim to proof? Our aim is to prove that this collection M is nothing, but S

of C; we are picking up subsets of S of C. So, M is a subclass of S of C; we want to

prove that this is equal to S of C. And that is proved as follows; first we will observe then

M is a monotone class, we will prove that. Once we have proved M is a monotone class,

we will also observe that we are given that mu 1 and mu 2 are equal on C.

So, C is a subclass of M and C is an algebra and C is contained in M; M is a monotone

class, so that will mean what? That the monotone class generated by C must be inside M,

but C is an algebra and the monotone class generated by an algebra is the sigma algebra

generated by it. And that also we have proved, so that will prove as a step 4; that M is

equal to S of C. So, let us prove step 3 and then conclude from its step 4. So, step 3; we

want to prove, so we are given that mu 1, mu 2 totally finite.
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So, we are in this case; C algebra mu 1 of A equal to mu 2 of A for every A belonging to

the algebra C; to show that mu 1 of A is equal to mu 2 of A; for every A belonging to the

sigma algebra generated by C; so, that is the question.

So, we are saying the proof define M to be the class of all subsets belonging to S of C for

which this property is true. So; that means, mu 1 of E is equal to mu 2 of E; so claim that

this is M is a monotone class. So, what is a monotone class? Recall a monotone class is a

collection of subsets of a set X, which is closed under increasing unions and decreasing

intersections. 

So, these two properties have to be checked; so, let us check that. So, let us take; so, let E

n be a sequence in M such that; E n is increasing. So, E n is inside E n plus 1; for every

n;  to  show union of  E n’s belong to M. Now, let  us  note that  E n is  an  increasing

sequence E n increases to E, which is union of E n’s; E n’s belong to M.

So, keep that in mind and we want to show; E belongs to, so that is the set E; we want to

show that E belongs to M; that means, mu 1 of E is equal to mu 2 of E. So, let us note. 
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What is mu of E? How do we compute it? Let us observe that mu 1 of E is nothing, but

limit of mu 1 of E n’s and why is that? That is because mu 1 is a measure; it is countably

additive.  So,  we  had  proved  that  countable  additivity  of  the  set  function  implies

whenever a sequence E n increases to a set E, then mu of E must be limit of mu 1 of E

n’s; that was the characterization property for countable additivity. So, this go back and

refer that was because of countable mu; countably additive. So, that is the property being

used here.

The equivalent form of it; so, that and now each E n belongs to M. So, that implies that E

1; mu of 1 of E n is equal to mu 2 of E n. So, this is equal to limit; n going to infinity, mu

2 of E n. So, that is we are using mu 1 equal to mu 2; on mu 1 equal to mu 2 because

sorry this is because E n belongs to M. And once again mu 2 is countably additive; so,

there are mu 1 was known and that implies that this is so; this is mu 2 of E, using the fact

that mu 2 is countably additive. 

So, let us once again; we have used lot of things from which we have proved earlier; mu

1 is a measure, E n is increasing to E. So, by countable additivity; mu 1 of E must be

equal to limit n going to infinity, mu 1 of E n; by countable additivity. Now each E n

belongs to M; E n is a sequence in M so; that means, mu 1 of E n is equal to mu 2 of E n.

So, this is equal to this. So, this is the second step quality and now once again mu 2 is

countably additive; E n increases to E. So, by countable additivity this limit must be



equal to mu 2  of E. So, it says mu 1 of E is equal to mu 2 of E. So, that implies that E

belongs to M whenever;  E n is a sequence which is increasing to M. So, this is for

increasing and the corresponding thing; we have to prove when it is decreasing and that

is where we are going to use the fact; that mu 1 and mu 2 are totally finite.

So, for the second case; let E n’s belong to M; E n include E n plus 1; for every n;

decreasing and E b equal to intersection of E n’s; n equal to 1 to infinity. So, we want to

show that E also belongs to M; so, for that once again mu 1 of E is equal to limit n going

to infinity mu 1 of E n; because mu 1 totally finite, mu 1 of X finite and mu 1 countably

additive. And that as earlier is same as mu 2 of E n because each E n belongs to M; and

that is equal to mu 2 of E; once again mu 2 is finite and E n is decreasing to E. So, that

proves this also; so, this proves that M is a monotone class.
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So, the class M which was equal to all subsets; E belonging to S of C such that mu 1 of E

is equal to mu 2 of E is a monotone class. And we are given that mu 1 of A equal to mu 2

of A; for every A belonging to C. So, what is that mean? An equivalent way of setting

that is saying that the collection C is inside the collection M.

So, that is what it means by every definition. So, M is a monotone class; C is inside it,

so, that implies that the monotone class generated by C must be inside M. So, because

recall; what is monotone class generated by a collection of subsets of C? It is the smallest

monotone class of subsets of X, which includes C; being the smallest, it must be inside it.



But note; C algebra implies M of C is equal to S of C. So, this is an important theorem

which we had proved; that if you take an algebra and generate a monotone class out of it;

that is same as generating the sigma algebra out of it. So, this is same as saying that S of

C is contained in M, but M is a collection of subsets of S of E; so, that is inside S of C.

So, that is same as saying that M is equal to S of C; the sigma algebra generated by C

and; that means what? For all elements in S of C; mu 1 is equal to mu 2 of E.

So, that proves the theorem; the uniqueness theorem namely f two; so, we have finally,

proved in this 4 steps, the theorem; that if mu 1 and mu 2 are two measures defined on a

semi algebra of subsets of a set X and mu 1 and mu 2 are both sigma finite and they

agree on the semi algebra, then they also agree on the sigma algebra generated by C. So,

this is an important theorem, which we are going to use quite often. So, with this we

come to an end a part of our course. So, this is probably the right stage to revise; what all

we have done till now. So, let us revise what we have done till now. 
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 So, we started with looking at collections of subsets of a set X; we defined what is a

semi algebra. So, what was a semi algebra? Semi algebra was a collection of subsets of a

set X; with the properties, the whole space belongs to it; the empty set belongs to it. It is

closed  under  intersections  and  the  complement  of  a  set  is  inside;  not  inside  not

necessarily inside it, but can be represented. 
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So, semi algebra C; semi algebra meant that empty set, the whole space belong to it; one

property. The second one; A and B belonging to C should imply A intersection B belong

to C; and the third property that A belonging to C implies, A compliment can be written

as a finite disjoint union of elements of C. So n for some C i’s; belonging to c. So, that is

a semi algebra; then we defined what is called an algebra. So, a collection C is called an

algebra; the first property as it is; empty set the whole space belong it. A and B belonging

to C should imply, it is closed under intersections that also belongs to C.

And now we are  something stronger  instead  of  just  saying that  A belongs  to  C;  its

complement is representable. Actually we want that this compliment also belongs to C.

So, this is something stronger; so, we said this is stronger property. So, semi algebra; so,

algebra implies semi algebra and the converse need not be true; that we had checked.

And then we defined what is called a sigma algebra; sigma algebra. So, a collection C is

a sigma algebra if of course, it is an algebra first of all. So, it is phi X belong to C; it is

closed under intersections A and B; belong to C; if A and B belong to C and then, but this

is  not  enough.  So,  actually  not  a  countable;  this  should  be  true  for  any  countable

collection. So, let us write whenever A i’s belong to C; that should imply that intersection

A i’s belong to C and because it is going to be closed under compliments.

So, this is the property one; this is second and the third property is that whenever A

belongs to C, should imply a compliment belong to C and that automatically implies that



C is also closed under. So, this property of countable intersections can be equivalently

stated as; because of the compliments that A i’s belong to C; imply union A i’s also to C. 

So,  a  sigma  algebra  is  a  collection  which  is  closed  under  a  countable  unions  and

compliments and of course, empty set in the whole space belong to it; then we defined

what is called a monotone class.
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So, what was a monotone class? M was called a monotone class, if whenever a sequence

E n belong to M; E n’s increasing, E is equal to union E n’s should imply that should

imply that E also belongs to M and so, this is one property. And second property we want

that whenever E n’s belong to M; E n’s are decreasing and E is equal to intersection of E

n’s should imply that E also belongs to M.

So, a monotone class is the collection of subsets of a set X with the property; it is closed

under increasing unions and decreasing intersections. Of course, sigma algebra implies

monotone class; the converse is not always true. Then we looked at; so, this was the first

basic concepts or properties of collection of subsets of a set X; we looked at. And then

we looked at; what are called the algebra generated by a collection of subsets; or the

sigma algebra generated by a collection of subsets or the monotone class generated by a

collection of subsets of a set X.



So, in all these cases basically given a collection C; so, let us just recall what was the

meaning of saying generation? 
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So, C any collection of subsets of a set X, so algebra generated by C generated is a

smallest  one. So, it was the intersection of all the algebras; which include C and we

showed such a thing exists. Similarly, the sigma algebra generated by C; we said it is

nothing, but look at all sigma algebras of sub sets of X which include C and take the

intersection so, that is called the sigma algebra. So, another way of saying is the algebra

generated by C is the smallest algebra of subsets of a set X, which include C.

Similarly S of C is the smallest sigma algebra of subsets of C; which includes C. And

similarly we have monotone class generated by C, it is the smallest monotone class of

subsets of X; which include C. And we showed by this properties that such a object

always exist and then we proved a very important theorem; namely the monotone class

generated by C is equal to the sigma algebra generated by C; if C is an algebra.

So, this was an important theorem that we had proved. So, these concepts were basically

about collection of subsets of a set X. Then we looked at  functions defined on such

collection of subsets of this set X and we called them as set functions. So, set functions

are functions defined on a collection of subsets of a set X. And the important class of set

functions was; the length function and we showed that the length function had important

properties, namely the length function which is defined on the class of all intervals in the



real line was shown to be a countably additive set function; which is also in variant under

translations; so, that was an important property.

And then finally, we had proved some equivalent conditions for countable additivity and

these conditions are very useful. So, let us just recall this equivalent conditions, we have

used one of them today also.
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So, one of the important conditions for example, if mu is defined on an algebra. So, this

is a algebra and it is finitely additive, then we said that mu is countably additive if and

only if mu is countably sub additive. Of course, plus; so, let us write plus mu finitely

additive. So, let us remove this condition; let us right mu 2 be an algebra and mu of

empty set equal to 0. So, let us put; so, mu is a set function defined on an algebra and mu

of empty set is 0; then we proved that saying that mu is countably additive is equivalent

to saying that mu is finitely additive and countably sub additive. And this is quite useful

in proving the countable additivity of set functions.

So, this was one and second we proved; that mu finitely additive, we assume that. Then

mu countably additive if and only if; whenever E ns it decrease of course, under the

condition A is algebra to E should imply mu of E n’s is equal; the decrease. So, let us

write decrease to E; then limit n going to infinity mu of E n is equal to mu of E. This

provided we had put an extra condition mu of X is finite. So, mu of X is finite E n’s

decrease to E and implies that limit of E n’s is equal to mu of e. 



So, this condition is equivalent to saying mu is countably additive; when we have this. If

you dont put this  condition then this may not be true, but then one can equivalently

prove; another thing that if E n’s increase to E; then that should imply mu of E is equal to

limit n going to infinity mu of E n’s.

So, this was the property of saying that when is something countably additive and finally,

today we proved the uniqueness theorem.
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Saying that if mu 1 and mu 2 are two finite countably additive set functions defined on a

semi algebra. So, this is a semi algebra; mu 1 and mu 2 are sigma finite measures; then

and mu 1 of A is equal to mu 2 of A; for every A in the semi algebra, then this implies mu

1 of A is equal to mu 2 of A; for every A belonging to the sigma algebra generated by C.

This is mu 1 and mu 2 should already be defined; I am sorry. So, we should say they are

already defined in S of C; C is a semi algebra.

So, C is a semi algebra; so, let me state it once again. C is a semi algebra; mu 1 and mu 2

are defined on the sigma algebra generated by C, both mu 1 and mu 2 are sigma finite

and mu 1 and mu 2 agree on the semi algebra, then they agree on the sigma algebra also.

So, they agree on the whole domain. So, if they agree on the part of the domain which is

the semi algebra; then they agree on the whole of the sigma algebra also. That is the

uniqueness result and that we proved under the condition that mu 1 and mu 2 are sigma

finite measures.



We will see this how that is used in extension theory in the next few lectures when we

come to them. So, we stop today here; so, in the next lecture we will start a new topic

called extension theory. So, we would like to extend a set function defined on a class to a

bigger class. For example, on the real line; we have the notion of length defined on the

collection of all intervals; we would like to define the notion of length for any set. So,

that is the aim of; that is the motivating thing for extension theory. So, we will use that

and prove the theorems in the next lectures.

Thank you.


