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Lecture - 08 A 
Uniqueness Problem for Measure

Welcome to today’s lecture on measure and integration this is the 8 th lecture on measure

and  integration.  Today  we  will  be  looking  at  a  problem  called  the  uniqueness  of

measures on algebras and sigma algebras. So, for this we will need to define some term

terminology. So, let us look at the uniqueness problem for topic for today’s lecture. So,

the problem is as follows.
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We are  given C an  algebra  of  subsets  of  a  set  X,  and S of  C is  the  sigma algebra

generated by C. So, C is an algebra and S of C is the sigma algebra generated by C. We

have got two measures mu 1 and m 2 defined on the sigma algebra generated by C such

that mu 1 of a is equal to mu 2 of A for every A belonging to C. So, for all elements in C

mu 1 and m 2 agree.

The question is can we conclude that mu 1 of E is equal to mu 2 of E for every element

in the sigma algebra generated by C. So, this is the general uniqueness problem which

place a role later on when we extend measures to general settings. So, to answer this

question let us make some definitions. So, first of all this is not true in general for all



measures, we are to put some conditions on the measures. So, let  us look at what is

called a totally finite measure. 
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A measure C is called totally finite if mu of every subset A is finite in that domain of mu.

So, C is a collection of subsets and mu is a set function. So, we said mu is totally finite or

sometimes we also said is finite if mu of A is less than plus infinity for all A belonging to

C and note that in case C is an algebra and mu is finitely additive then mu is finite if and

only if mu of X is finite.
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So, let us assume C is an algebra and mu from C to 0 to infinity is finitely additive. So,

suppose mu of the whole space is fine note the whole space x belongs to C because C is

an algebra. Then we had seen earlier finite additively of mu implies mu is monotone

right we are seen this property earlier. So, we will not to going to the details of this again.

So, because mu is monotone. So, thus for every a contained in x mu of A will be less

than or equal to mu of x which is finite.

So, thus implies mu of A finite for every a subset of x and converse is obviously true. So,

conversely is true converse is true because X belongs to C and so, mu of X is finite. So,

whenever we are dealing with finitely additive set functions saying mu is totally finite it

is enough to say that mu of X is finite and as a consequence mu of every subset will be

finite. So, this is a easy consequence of saying for a finitely additive set function on an

algebra, mu a of the whole space finite is same as saying mu of every subset a of x a in

the algebra of course, is infinite.

(Refer Slide Time: 04:31)

Let us look at the property that let us take a set function mu and we say that the sigma

finite. So, we defined what is totally finite, and now we defined what is called sigma

finite. So, a mu is set to be sigma finite if we can write the whole space as a union of sets

X n and one to infinity, such that these sets are pair wise disjoint. So, we want this sets to

be pair wise disjoint and mu of each X n so be finite. So, each X n should be element in

the domain of mu in the class C and mu of X n should be finite. So, essentially saying



that for totally finite we said mu of the whole space is finite and sigma finite means what

that X can be cut up into pieces X 1, X 2, X n so on and mu of each X n is finite. So, this

is what is called sigma finite set functions. So, what we are going to. 
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Let us look at some examples of set functions. So, the length function lambda on the

class of all intervals is sigma finite.
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So, that is easy to see y is the length function sigma finite. So, here is the length function

lambda on the class of all intervals taking values in 0 to infinity, the whole space that is



real line of course, is the interval minus infinity to plus infinity and length of R we know

it is not finite it is equal to plus infinity right. But we can write R as a disjoint union of

the intervals n to n plus 1 for example, n belonging to integers. So, the real line is cut up.

So, here is the real line. So, here is 0. So, take 0 1 open 1 close 2, open 2 close 3 and so

on and on this side minus 1 and this is minus 2 and so on.

So, we have cut up the real line we are divided the real line into countable many disjoint

pieces, each one is a interval and length of n to n plus 1 for every n is equal to 1 which is

less than of course, infinity for every n. So, the whole real line is written as a countable

disjoint union of intervals,  each one having finite length.  So, lambda on the class of

intervals is sigma finite. Of course, it is not finite right because the measure of the whole

space length of the whole space is equal to plus infinity. So, this is an example of a set

function which is sigma finite; we will give another example of a set function which is

totally finite.

So, for that let us look at the length function restricted to any finite interval. So, let us

example say for example, let us look at the interval a to b. 
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And let us look at all sub interval. So, let us look at I tilde a b, to be all sub intervals of a

b and define of  course,  the length  function as before.  So,  a  b  to.  So,  this  will  be a

function from 0 to b minus a, length of I is equal to the usual definition of length I for I

contained in a b, and we know length function is finitely additive its countably additive



so on. So, so on this intervals also it is countable additive and lambda of the interval a to

b we know is equal  to  b minus a  which is  finite.  So,  lambda.  So, one says lambda

restricted to sub intervals in a b is finite or totally finite for every a and b.

So, this is the example of a measure which is totally finite let us look at another example

of a set function which is not. So, let us look at example.
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Of let x be any set and for any subset a of x let us define mu of A to be equal to plus

infinity, if A is non empty and mu of 0 to be equal to 0 then; obviously, this is a measure

on P of X this is a simple consequence the property that one can easily check, because

mu of empty set is 0 is given and if A is any set which is a countable disjoint union or

not. So, mu of the union will be equal to again plus infinity which is equal to sigma mu

of is  at  least  one of  them has  to  be non empty. So,  hope it  is  clear  that  this  mu is

countably additive this is a measure on P X. 
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So, and if not let us look at supposing A is equal to union of A is i equal to 1 to infinity, if

A is equal to empty set then A i is equal to empty set for every i.

So, implying mu of A which is 0 is same as sigma mu of A is i equal to one to infinity.

The second possibility if A is not empty and A is equal to union. So, that implies there

exist at least one i, i such that A i is not empty then. So, let us say that such that i says

that. So, let us say that is A i naught there is a at least one i. So, let us that is i 0, then

union A i naught is not empty and implying that ah not empty. So, that is A is not empty

and even.  So, this  is  not required then mu of A is  equal to plus infinity  is  equal to

summation mu of A is because at least one term here is equal to is not empty. So, that is

equal to plus infinity.

So, mu of A i naught is equal to plus infinity. So, that say this is also plus infinity. So,

they are same. 
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So, this is a measure on the class of all subsets. So, mu of A plus infinity if A is not

empty and mu of empty set is equal to 0 is a measure and this; obviously, is not sigma

finite because there are no subsets anyway whose mu is finite. So, this is example of ah

non sigma finite  measure.  So,  the theorem we want  to  prove today is  the following

namely.
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Let us take C a semi algebra of sub sets of a set x, and S of C be the sigma algebra

generated by C. Let mu 1 and mu 2 between finitely additive set functions on S of C such



that mu 1 of E is equal to mu 2 of E for all E belonging to C then we want to show that

mu 1 of A is equal to mu 2 of A for all A belonging to first A of C, where A of C is the

sigma algebra generated by C.

So, we are saying a first step we are going to prove that if two measures mu 1 and mu 2

defined  on  a  semi  algebra  agree,  then  they  also  agree  on  the  sigma on  the  algebra

generated by that semi algebra. So, this is what we want to prove. So, let us see the proof

of that. 
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So, C semi algebra A of C that is the algebra generated by C and we are given mu 1 of E

is equal to mu 2 of E for every E belonging to C to show mu 1 of A is equal to mu 2 of A

where every A belonging to algebra generated by C. So, how do we prove it? So, let us

start. So, let us take a set A,which belong to A of C then that implies. So, recall we had

shown a characterizations of elements of the algebra generated by a semi algebra.

So, we showed that if A is a element of the algebra generated by a semi algebra, then this

A must look like a finite disjoint union of element C i, i belonging to n there C is belong

to the semi algebra c. So, every element A in the algebra generated by a semi algebra we

had shown must have a representation like this, but then mu 1 of A is equal to mu 1 of

this finite union and we know mu 1 is finitely additive. So, that implies this must be

equal to sigma i equal to 1 to n mu 1 of C i, but each mu 1 is equal to mu 2 on each

element of C and C is are elements of C. So, that implies that this must be equal to one to



n mu 2 of C is, but again by using mu 2 is finitely additive I can write this as mu of A

because A is a finite disjoint union of elements of this.

So, mu 1 of A is equal to mu 2 of A whenever A belongs to A of C. So, this proves

theorem that whenever two measures finite whenever two finitely additive set functions

mu 1 and mu 2 agree on a semi algebra then they also agree on the algebra generated by

it.
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So, let us go to the next step of this uniqueness problem. So, that is saying that let C be a

semi algebra of subsets of a set x once again and S of C be the sigma algebra generated

by C. So, this is we have already prove sorry yes. So, let mu 1 and mu 2 be sigma finite

measures on S of C such that mu 1 of E is equal to mu 2 of. So, this is a miss spread mu

1 of E should be equal to mu 2 of E for all E in C then mu 1 of E is equal to mu 2 of a for

all A belonging to S of C whereas, of C is the sigma algebra generated by it. So, let me

state and we will divide the proof into steps of course.

So, let us look at the statement of the theorem, once again we were saying that let mu

one.
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And mu 2 b two measures which are sigma finite defined on the sigma algebra generated

by a semi algebra C. Measures C semi algebra S of C this S of C is equal to sigma

algebra generated by C. Given mu 1 of A is equal to mu 2 of A for every A belonging to

the semi algebra to show mu 1 of A is equal to mu 2 of A for every A in the sigma

algebra generated by C. So, this is what we want to show. So, to show this the first step

let us look at the first step. So, we may assume that C is an algebra. So, first. So, here we

are given that C is a semi algebra.

So, step one says we may assume that C is an algebra and that is because of the fact that

we have just now shown, that if mu 1 and mu 2 agree on the on a semi algebra then they

also agree on the algebra generated by it. So, by the given hypothesis mu 1 of A is equal

to mu 2 of A for every A belonging to the algebra generated by C. 

So, we already mu 1 and mu 2 agree on the algebra generated by A of C and we want to

show that this implies mu 1 of A is equal to mu 2 of A on S of C the sigma algebra

generated by C, but note this is same as the sigma algebra generated by A of C that also

we have shown that given a semi algebra you can directly generate the sigma algebra or

you can generate the algebra first and then generate the sigma algebra both are same, and

just now we showed whenever two measures agree on a semi algebra they agree on the

algebra generated by it. So, mu 1 and mu 2 agree on the semi algebra they show that

agree on the algebra generated by it, and we want to show that they agree on the sigma



algebra generated by it and the which is nothing, but S of C. So, that proves the first step.

So, as a first step in our proof we are saying that we can assume that the given class C on

which mu 1 and mu 2 are defined is actually an algebra.  So, that is the first simple

equation  in  the  proof,  that  without  class  of  generality  we may assume that  C is  an

algebra.


