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Lecture - 06 A 
The Length Function and its Properties

Welcome to lecture 6 on measure and integration. If you recall in the previous lecture we

had started looking at various properties of the length function. In today’s lecture we will

continue  looking  at  the  properties  of  the  length  function.  And  then  we  will  try  to

characterize some other countably additive set functions on the class of all intervals in

the real line.
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So, the first topic we will continue is the length function and it is properties, and then

countably additive set functions on algebras. Let us just recall what are the properties of

the length function that we have already proved.



(Refer Slide Time: 00:54)

So, length function was defined on the class of all intervals that is I, and to every interval

with  endpoints  left  end point  a  and right  end point  b,  or  need not  be left  and right

normally we will write the left end point a first and right end point b later.

So, for a interval with end points a and b, it is length lambda of I we defined as the

absolute value of b minus a, if a and b are real numbers and in case either of it is plus

infinity or minus infinity we will define the length to be equal to infinite. So, for all finite

intervals  the  length  is  as  usual  concept  of  the  difference  between  the  values  of  the

endpoints. So, that is absolute value of b minus a and the plus infinity if the interval is

infinite.
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So, we proved the properties that the length of the empty set that is a interval is 0, then

we proved the monotone property of the length function namely length of I is less than

length of J, if I is a interval which is inside the interval J and then we proved finite

additivity property namely if a interval I can be written as a finite disjoint union of the

intervals J i, i equal to 1 to n then the length of the interval I is same as summation of

lengths of individual intervals.

So, if I is a finite disjoint union of intervals the length of I is summation length of J is.

And then we looked at a straight extension of this property namely if I is a finite or a

infinite interval actually we will look at that. 
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And it is contained in a union of intervals i is that is i is covered by a finite union of

intervals which need not be disjoined then length of I is less than or equal to summation

length of the intervals I is one to n the finite number of them. And then so, this was

called  for  the  finite  I  is  covered  by a  finite  union.  And now then we extended  this

property to the arbitrary countable union. So, if I is a interval which is covered by a

countable union of intervals I i which need not be disjoint. Then we proved that lambda

of I is less than or equal to summation of length of the individual intervals. And if you

recall this property used what is called the (Refer Time: 03:33) property on real line.
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Let us continue our study. So, next thing we want to prove is the following that if I is a

interval which is of is a any interval which is a the finite interval say and it is a union of

intervals I n’s n equal to pair wise disjoint intervals then the length of I is equal to sigma

length of I n’s. This property In fact, we had proved it. So, let us prove it to once again.

So, let us look at this property.

(Refer Slide Time: 04:19)

So, if I is a interval which is written as a union of intervals I n's n equal to 1 to infinity I

is finite. So, keep in mind we are keeping I as a finite interval, and I n intersection I m is

equal to empty then that implies length of I is equal to sigma length of I n's 1 to infinity.

So, recall we have already shown that length of I is less than or equal to sigma length of I

n's.  That  is  because of the property that  just  now proved I  is  covered by a union of

interval. So, length of I must be less than or equal to prove the other way around. So, to

show length of I is bigger than or equal to length of length of sigma i equal to 1 to

infinity length of I is this is what is to be shown. So, let us note that for any m I 1 up to I

n these are the intervals which are contained in I right, and I is finite. So, let us say this is

the interval with end points a and b that is I, and a 1 I 1 is an interval which is inside the

a b. So, it has end point say a 1 b 1 I to has end points a to b to and I n has end points a n

b n.

But these being finite numbers and they are disjoint. So, we can arrange the intervals like

a 1 here b 1 here may be a 2 here b 2 here and so on, and A m A n here and b n here. So,



what we are saying is we can assume. So, without loss of generality we can say that a is

less than or equal to a 1 is less than b 1 less than or equal to a 2 less than less than a 2

less than strictly less than b 2 and less or equal to and so on, and less than or equal to b n

less than or equal to b. 
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And once that property is true we can you So, immediate that b minus a is bigger than or

equal to b n minus a 1, which is bigger than or equal to now you can add and subtract

consecutive terms. So, b n minus a n plus b n minus 1 minus a and minus 1 and so on

plus b 1 minus a 1.

So, add and subtract terms which are subtract a bigger term add a smaller term and so on.

So, which is equal to sigma i equal to 1 to n length of I is and this b minus a is length of

I. So, what we have gotten is this is for true for every n. So, that implies length of I sorry

this is bigger than or equal to. So, this is bigger than or equal to sigma i equal to 1 to

infinity  length  of  I  is  i  equal  to  1  to  infinity.  So,  that  proves  the  other  way round

inequality  also.  So,  hence  what  we  have  shown is  that  the  length  function  has  the

property whenever a finite interval is written as whenever a finite interval is written as a

union a countable union of disjoint intervals then the length of the interval I is equal to

summation of the lengths of the individual intervals.

We would like to extend this property not only to finite interval. In fact, to any interval.

So, for that we need a result namely suppose I is a any interval then we want to claim



then the length of I is equal to summation lengths of I intersection the interval n to n plus

1. Likely we should. So, this is the property we would like to prove. And effect one can

have here the interval which is left open n and right close n plus 1 because end point is

not going to matter. So, we want to prove that the length of an interval I is same as

lengths of it is piece which lie inside the intervals n to n plus 1. So, to prove this property

let us observe the following.
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So, let us observe this is a real line. So, we can write it as the intervals. So, it here it is

say 0 1 2 and so on and here is on the other side. So, here is minus 1 minus 2 and so on. 

So, let us take a interval I. So, if possibly if I is finite it if it is a finite interval. Then

obviously, it will lie between 2 some bounds. So, infinite then there exist some n and m

such that I is inside n to m right. So, there will be some So, here is some n and here is

some m. So, that I is inside this right. So now, let us look at the piece. So, let us inside let

us look at piece of. So, this is n plus i, and this is n plus i plus 1. So, intersection with this

side. So, what we are saying is this I can be written as union a union of n to n plus i i

equal to. So, 1 to up to up to n plus i equal to m so, such that up i equal to n plus i equal

to m minus n right and now let us observed that this piece these are disjoint union. 

This union is a disjoint union and a finite number of them. So, this will imply length of I

is equal to summation i equal to 1 to m minus n, lengths of n plus i. Now this interval I

does not intersect with any other interval out with which is bigger than m and which is



less than n. So, all those intervals this is in the intersection with I is empty. So, what we

can write is this is same as sigma of i equal to 1 to m minus n this is the intersection of

should I have written the intersection with the interval I so, the piece because the interval

may start somewhere else. So, let us write this is intersection with the internal I. So, let

me write this again. So, this is intersection with I. So, let us write this again.
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So, the I is written. So, I can be written as a union n to n plus from sorry, this is this is

also not wrong. Let me just write n to I can be written as union n plus i to n plus i plus 1

intersection I i equal to starts with n. So, 0 and goes up to when n plus i plus 1 is equal

to. So, that is m minus. So, we want n plus this is the equal to m. So, m minus n minus 1

so that implies length of I, because this is a finite disjoint union. So, this is equal to

summation i  equal to 0 to m minus n minus 1 length of n plus i  to n plus i  plus 1

intersection I.

And now for other parts the bigger be 0. So, I can write as sigma over I belonging to

integers length of n plus i n plus i plus 1, intersection I over all I integers all integers I,

because the intersection with the other intervals is going to be empty and that is going to

be 0. So, this proves that whenever I is finite way are true. So, I finite case is.
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Now, let us prove the same thing when I is infinite, the let us take I infinite. Then I can

write I is equal to union of same thing n to n plus 1 intersection I, i belonging to integers

right. This is because keeping in mind that the real line is equal to union n to n plus 1, n

belonging to integers. So, interval I is this interesting this.

And now because I is infinite, let us say it looks like say something like a to plus infinity.

So, in that case this intersection of So, I infinite implies that n to n plus 1 intersection I is

equal to n to n plus 1 for infinite n’s. In fact, some stage onwards so In fact, if n is say

bigger than or equal to a, then that is the interval. So, here is a and here is n then n to n

plus 1 and so on they are all going to be non empty intersections with intersection being

equal to that n plus 1. So, this implies that sigma length of n to n plus 1 intersection I is

going to be equal to plus infinity right. Overall n belonging to z and that is same as

length of I because I is a infinite interval.

So, that proves the property namely. So, this proves the property namely for any interval

I if for any interval I the length of the interval can be written as the length of it is piece

lengths of the piece I intersection n to n plus 1. So, this is an important property. So, it

says length of any interval is a summation of lengths of it is piece. This property and note

that length of each one of this piece being a finite interval is a finite number. So, we have

this says that any interval can be written as a countable disjoint union of intervals each



having finite a length. So, this is a important property which is going to be called as

sigma finiteness property of the real numbers of the length function.
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So, let us we are going to use this property to prove what is called countable additive

property of the length function. And that says that the length function if a interval i is

written as a countable disjoint union of a intervals I n's, then the length of the interval I is

equal to summation lengths of I n’s.

So, to prove this property. So, let us start looking at the proof of this property. So, to

prove this property let us write.
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So, I is a interval I is a interval which is written as a union of I n's n equal to 1 to infinity,

where the intervals I n intersection I m is equal. To empty to show that length of I is

equal to summation length of I n's n equal to 1 to infinity. So, let us look at a proof of this

case 1. So, assume. So, let I be finite, likely finite or infinite is not important. So, let us

let us take general case itself. So, note I length of I is equal to summation length of I

intersection n to n plus 1. And this is because of the property that we have just now

proved. And now also note and I intersection n to n plus 1 can be written as this is a finite

interval and I is equal to So, this is n to n plus 1. Intersection this interval I is a countable

disjoint union. So, it is a union of I j, j equal to 1 to infinity.

So, we can write this as union J equal to 1 to infinity of I j intersection n to n plus 1. And

now this is equality for finite intervals only. Because I intersection n plus n to n plus 1 is

a finite interval which is written as a because I j’s are disjoined. So, these intervals are

disjoint  and they  are  finite.  So,  thus  this  implies  by  the  additive  property  for  finite

intervals  which  are  disjoint  that  lambda  of  I  intersection  n  to  n  plus  1  is  equal  to

summation J equal to 1 to infinity lambda of I j intersection n to n plus 1 right. So, the

here we are using the fact  that  whenever  a  interval  I,  is  a finite  interval  which is  a

countable  disjoint  union  of  intervals  1  to  infinity  then  the  length  of  I  is  equal  to

summation of length of this.



Now, look at this equation here and look at this equation here. So, length of I is equal to

summation n over integers, length of I intersection n to n plus 1 and that is computed to

be equal to this.

(Refer Slide Time: 20:50)

So, combining these 2 we get the property that length of I is equal to which is summation

n belonging to z of length of I intersection n to n plus 1 and that property we are put

going to put it here. So, summation J equal to 1 to infinity lambda of I j intersection n 2 n

plus 1. And now keep in mind that all this is a double summation of series, and all of

them are nonnegative. So, I can interchange the order of integration. So, I can write this

as summation over J equal to 1 to infinity, summation over n belonging to integers of

length I j intersection n to n plus 1 right.

And now once again I use the fact that the interval I j length of I j can be written as

length of I j intersected with n to n plus 1, summation over n belonging to z. Just now we

have proved that fact the sigma finiteness of the length function any interval length I is

summation length of it is pieces inside n to n plus 1. So, this is here. So, that gives me

the fact that. So, this gives me length of I is equal to summation J equal to 1 to infinity

and this is length of I j. So, that proves the countable additive property of the length

function namely if a interval I is written as a countable disjoint union of intervals. So,

this proves the countability property that if a interval I is written as a countable disjoint



union of intervals I n's, then length of I is equal to summation length of I n's whether I

interval I is finite or infinite that does not matter.

So, the length function is countably additive that is what we have proved that is the

important property of the length function. Let us extent this property to coverings which

are not necessarily disjoint.
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So, that is called countable sub additivity. So, that is says that if a interval I is such that I

is contained in union of intervals I n's n equal to 1 to infinity which may not be disjoint

then; obviously, we should expect that the length of I is less than or equal to summation

length of I n's. And it is proof is very much similar to the earlier  case. So, let us go

through the  proof  again.  So,  that  we understand how sigma finiteness  of  the  length

function is used.
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So,  I  is  a  interval  which  is  contained in  union of  I  n's  n  equal  to  1 to infinity, this

intervals I n's may not be disjoint.

Now, what we do is look at length of I, I can write this is equal to sigma n belonging to z

length of I intersection n to n plus 1 that is sigma finiteness of the length function. And

now the interval I intersection n 2 n plus 1 is inside because this I, I can write as union

over I n’s. So, this is equal to. So, let me write this is less than or equal to sigma length

over n. So, this thing is less than equal to sigma length of I j intersection n plus 1, J equal

to 1 to infinity. So, here what we have use the fact that the interval I to this intersection

this interval is covered by the union of these intervals. So, and this is the finite interval.

So, length of this must be less than or equal to length of this. And now once again non

negative series of non negative numbers I can interchange. 

So, this is equal to sigma J equal to 1 to infinity sigma n integers length of I j intersection

n to n plus 1 and that once again this once again is nothing but the length of the interval I

j. By the fact that just now sigma finiteness of the length function, so length of I is less

than or equal to length of sigma length of I j’s. So, this a property is called countable sub

additive property of the length function.
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