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We are continuing the discussion of Bijaganita of Bhaskaracarya, so this talk will be continue.

(Refer Slide Time: 00:20)

This is continuing with the analysis of the (FL) process of the (FL) method first I will remind

you what we discussed yesterday the basic algorithm of the (FL) method then I will summarise

the analysis mad by Krishaswamy Ayyangar then we will go to the currently known or what is

thought in the textbooks are the solution of this equation, equation x2-D y2 =1 is known as the

pell’s equation how it was solved in European 6, 17th, 18th centuries.

Then I will compare the solution of Bhaskara or the older (FL) method of India with a (FL)

method of solution. Finally he says something about the optimality of the (FL) method.
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So, as I said the (FL) condition which was there in the (FL) method was replaced by the simpler

condition that Pi+Pi+1 is divisible by Ki by (FL) and so the algorithm (FL) algorithm that we are

using will be in this form use all x square-Dy square =1 remember D is a non-square integer and

you want to find out x and y in integer. So, you start with initial values X0 =1, y0 =0, K0 =1, p0

=0. In any step Xi, Yi, Ki such as Xi square-D yi square =Ki find the Pi+1 such that these 2

conditions are satisfy Pi+Pi+1 is divisible by Ki, Pi+1 square+1 is minimum.

(Refer Slide Time: 02:12)

Then once Pi+1is found you can find out Yi+1, Ki+1 and Xi+1 and for that use the auxiliary

quantity ai who significance we will see in the minute, ai is defined as Pi+Pi+1by Ki in epsilon 1

is +1 is D is greater than Pi square and xi square and epsilon 9 is -1, if D is less than Pi square, so



this Xi+1 and pie i+1 that you are calculated satisfy Xi+1 square-Dyi+1 square is Ki+1. Now the

Ki+1 value could anything, so you have to keep iterating the algorithm till you get +1 in which

case the problem is solved.

But you can always do (FL) if you find -1 or +/-2 or +/-4 you can always do (FL) and go to the

solution, so this is the (FL) algorithm that we discuss in the last class.

(Refer Slide Time: 03:10)

So, to the collect let X square-67 y square =1, so here the initial step is x is 1, y is 0, p is 0, a is 1.

So next step ei+Pi+1 is divisible by Ki and Pi square is closest to 67 then we have to choose this

to be 8, then 8 square-67/1 maybe-3, so the Pi and Ki you will be 8 and -3 and if you use the the

formula gave you Xi and Yi will turn out to be 8 and 1. This of course it will be 8 square -67 into

1 square it is –p.

Next step, so 8 you have to add Di+1 such that it is divisible by 3, so possibilities are 4, 7 and 10

of them 7 square 49 is closest to 67 choose 7, so 7 square-67 divided by –p is 6, so in this case

you get p and k to be 7 and 6. You can fill up this ai column also a0 is 0+8/1 that is 8, a a1 is 8+7

15 divided by 3 that is 5.

So, in the next step from 7 you to find out Pi+1, so it should be divisible the sum should be

divisible by 6, 5 and 11 are the possibilities, 5 square is closer to 67 that 11 square choose 5 then



you will get 5 and -7, so at this point you have 90 square-67 into 11 square is -7, next you will go

you will immediately get the K of -2, so to 5 you have to add a pi+1 such that the sum is

divisible by 7, possibilities are 2, 9 and 16 amongst them 9 has the square closest to 67.

So, you put 9 then 9 square-67 divided by -7 is -2, so you have which reach the (FL) of -2 you

can do (FL) at this point 221 square-67*27 square is -2 you do the (FL) by 221 and 27 you obtain

the final solution 48842 square- 67 into 5967 square =1.

(Refer Slide Time: 05:28)

So, let us summarise how (FL) analyse this algorithm he proved that this process always leads to

K =1, he also showed that the process is different from what is known as the Euler-Lagrange

method which is based upon the simple continued fraction expansion of root D I will explain all

these.  So,  now first  step let  us  start  with  Xi  square-D yi  square  =Ki,  think  of  an  auxiliary

equation like this Pi+1 square-D into 1 square the Pi+1 square-D do the (FL) of these two.

Then you will get this square up on the right hand side right but take this product to the take this

Ki to the denominator then you get an equation like this. If you divide the product of these 2 by

Ki square then you will get an equation like this, so by doing just the (FL) of these 2 equation

you have obtain this you can recognise these are the quantities appearing in the steps of the (FL)

equation.



So, the first thing is to show that the quantity that appear in this algorithm are all very defined

then non-negative, so that of the first thing that we have to do when we analyse the algorithm

like this. So, what can be shown is it is very simple if you assume that Xi, Yi and Ki are mutually

prime  that  means  they  have  no  common  devisers  and  if  we  choose  Pi+1  such  that  Yi+1

=YiPi+1+Xi by mot a is an integer that was the (FL) version of the (FL) algorithm by the first

condition was put in the (FL) there.

This is chosen to be an integer by the algorithm then you can show assuming that Xi, Yi, ki of

prime then you can show by this algebra equation that Xi+1 and Ki+1 are also both integers, so

that is the first thing.

(Refer Slide Time: 07:24)

And if  you write  the algorithm for the next step you will  get an equation like this  and that

equation can be simplified into this forum which will show you that is ai+1 or ai+2+Pi+1 by

Ki+1 that is these have to be integers. So, (FL) version it is just obtain by second iteration of the

algorithm therefore this (FL) 2 point in Krishnaswamy Ayyangar’s proof he showed first that the

algorithm is well defined that these quantities are all integers.
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If you start with an initial situation then you showed that the (FL) condition is equivalent to a

condition like this, so this algebraic relation shows you that ai is an integer if I know the Pi+Pi+1

by Ki+1 is an integer in that what gives you the equivalents between the 2.

(Refer Slide Time: 08:26)

Then comes the proof that is always converges to k =1 that somewhat more complicated that is

based upon what is known as the theory of quadratic forms I will not tell you detail a quadratic

form A, B, C is something like this Ax square+2Bxy+Cy square (FL) is using this Ki is Pi+1 and

Ki+1 to  make  a  quadratic  forum and  that  Pi+1  square-Ki  Ki+1 =D,  2  quadratic  forms  are

equivalent if B square-AC is the same for both of them.



So,  you have  a  class  of  all  quadratic  forms  of  the  forum Ki+pi+1Ki+1 such that  they  this

disdetermine  D then he defined quadratic  form to be  a  Bhaskara form when this  kind of  a

condition is satisfy and now in the (FL) what is happening you start with K0 and a P0 then you

go to P1 first from that you will find K1 also, so in the (FL) you will successively get successive

quadratic forms.

So, this successor of a Bhaskara form by doing (FL) process Krishnaswamy Ayyangar showed is

also a Bhaskara form.

(Refer Slide Time: 09:44)

And then he even showed that you can start with any value of K and do (FL) you will eventually

come to a value of K which is less than root D and later on you will move within the region K

less than root D and P less than 2 root D. So, both case and P’s are bounded by root D and 2 root

D and K and P are integer and if they are bounded by root D and 2 root D after sometime they

have to repeat in a cycle.

So, already the cyclic property of the algorithm is proved finally he showed that the amongst the

set of all equivalent cycles of by doing the (FL) process.
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The Bhaskara forms go in  a  cycle  he showed that  any 2 cycles  of  Bhaskara forum are not

equivalent and all equivalent Bhaskara forums coming the same cycle to do that proof he use the

older proofs that were done by (FL) or quadratic forms are what was known as the (FL) forms

and therefore he was able to show that you start with any K whatsoever you start with any xi any

yi such that any k is there Xi square-D yi square =Ki go on doing (FL) you will always first

come to a value of less than root D.

And eventually you come to the vale 1 and so this was the proof of (FL) now we quickly go to

the Euler-largrane method, so what is the history of this. So, in1657 sharma the famous French

mathematician he post a challenge to the British mathematicians first.
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You wrote to his friend (FL) saying that can you solve these 2 equations 61x square+1= y square

and 109x square+y 1=y square for x and y in integers already you see that the 61 x where it is

coming there and within couple of months he wrote this as a problem and sent it as a challenge to

mathematicians in Frnace, Belgium and England the question was the same thing can you solve

the equation x square-D y square =1 in integers.

And he say people know the kind of an equation but the important thing is to put the restriction

that  you want  solution  in  integers  and this  is  the birth  of  the theory of  numbers  in modern

mathematics  as and the rail  says that this was the birth of theory of numbers essentially the

problem. Now it was sent to England William Brouncker was the president of royal society and

his friend John Wallis was the professor in Cambridge prior to Newton.

So,  both  of  them wrote  down the  solution  first  they  wrote  down the  rational  solution  that

Brahmagupta had written down in 628 and 72 (FL) said you are cheating and ask you for integral

solution  rational  solution  (())  (12:39)  so,  then  of  course they  sat  down and worked out  the

integral solutions (FL) had asked for 4 particular cases (()) (12:50) had asked for D =61, D =109,

so he had post the problem for 149, 109 and 433.
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He knew that they are going to involve large number of steps, so to check that you are proficient

in (FL) you solve the (FL) for all this (FL) equation for all this 5 examples 61, 4 examples right.

(Refer Slide Time: 13:13)

D =61, 109, 439 is a 433 and what is the other one 149 and 433.

(Refer Slide Time: 13:27)



If you do that so just this we saw already gives you solution which goes to trillions the order on

magnitude of x. So, the solution was communicated by (FL) in letters and then Wallis published

all  this  in1657 in latin  and later  on he wrote a  famous book an algebra in  1685 where this

solution was put in that algebra equation came in let it is one of the earliest science books in

English Wallis algebra written in 1685.

Now for now of course wrote 2 English mathematicians saying that he willingly and joyfully

acknowledges the validity of their solutions but privately he complained to his friend Huygens

that they cheated they had not given in a general proof that they were asking.
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And he said this proof must be based upon the method of this end (FL) proved very little in his

long carrier but he suggested lot of theorems for which he is wrote in the foot notes and I have a

proof which is too long to be communicated here and many of them were based upon the method

of design.  Now Euler in 1730 starts again his journey into the same equation it is like (FL)

starting from larger number coming down to smaller numbers (FL) is the standard method of

design.

Euler in 1730 describes Wallis method and ascribes to John pell and so naming of this equation

as pell’s equation is due to Euler, Euler wrote a famous book on algebra and where he called it

Pel’s equation and that name as stuck and he shows first  Euker start  showing that there are

infinite number of solutions then in 1757 he gives a method for solving based upon the simple

continued fraction expansion of root D and he also gives a table of solutions from 2 to 120 for

this.

And in 1764 Euler rediscover the (FL) principle he called elegant most elegant theorem elegant

as elegantsium meaning (FL) as we say in sankrit. So, this is the most elegant theorem and in

1768 to 70 (FL) wrote a series of paper where he proved everything that Euler hide that, so the

Euler method become well established and proved by 1770, so what is the method, so what is the

simple continued traction.
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So, normally a0+1/a1+1+a2+1/ etc., further division like that is called continued traction it is a

called a simple continued traction if only once appear here a0, a1, a2 are all integers they are

positive at the the first one because integer can be negative. So, the various ways of denoting

because this way of writing it will take too much space, so one were denoting it is by writing it

this way another way of denoting it is by putting the + in the denominator.

So, hypographically inconvenient in typewriters but while writing it is quiet easy now how to get

a continued traction associated with any real numbers just way pay some attention to this the first

partial quotient these are called partial quotient, the first partial quotient a0 is just the integral

part of alpha what is the integral part of alpha if the number is 1.3, integral part of that is 1, if the

number is 1.9999 the integral part of that is still1.

Now subtract integral part of alpha from alpha, so that will lie between 0 and 1 take 1 over that

take the reciprocal of that that will much more than 1 that is called as alpha 1, then the integral

part of alpha 1 call it a1 and now alpha 1-b integral part of alpha 1 take the reciprocal of it, this

an number larger than 1.

Then the integral part of that alpha 2 that is a2, so that way you start getting a0, a1,2 etc., a0,a1,

a2 are called partial quotient alpha 1, alpha 2 are called complete quotient.
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So, let us try this example 149/17 we want to express this as continued traction, so basically this

is 8+1 over no no 9, 8 80 136, so 13/17, so now write 1 invert this, so this 1 over you are seeing

some similarity with what we were doing earlier. So, this will be 8+1 over 1 is the 13+1+1 over

1+1 over 1 something like this 81 is 3, 4 things we getting where is the 4 oh yes.

So, this how it will look by mutual division you can get the continue traction for any rational

number and if it is a rational number the continue traction terminates. And if it is an irrational it

does not terminate here are 2 irrational numbers which has nice continue traction 1+root 5/2

called the golden ratio it is continue traction is 1, 1, 1, 1 e is the base of natural logarithms as a

nice continue traction 2,1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1 etc., 

Unfortunately 5 does not have a nice continue fraction calculating the 10,000th partial quotient of

the continued fraction of pie is as difficult of calculating the 10,000 decimal place of pie. So,

they are equally random.
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Now this you had continue fraction like this  you stop at  any point then that  will  become a

rational  number  you calculate  it,  it  can be written  as  Aj/Bj  that  is  called  convergent  of  the

continue fraction. So, this conversion side this side recurrence relation these are essentially what

is there in the (FL) process of Aryabhatta this calculating the convergent backwards is the (FL) is

recurrence relation are the essentially the (FL) relations.

This a0, a1, a2 are the quotients that come in the mutual divisions of the (FL) and (FL) in (FL)

and this convergent have to satisfy this property AjBj-1, Aj-1Bj is -1 to the power j+1. So, AjBj

are obtained it will have a continue traction whether it is terminating or not terminating you

terminate  it  any  point  you  get  the  corresponding  convergent.  So,  those  will  be  rational

approximations to the irrational number null number that you have.

They will optimal in some sense, so the conversions of this are so you can straight away see if

you terminate it here it is 8, then 8+1 over 1.
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So, 8/1 is the first convergent, 9/1 is the next convergent if you terminate it here if you terminate

it in the place 3 you will have 35/4 and if you go all the way it is 149/47 sorry whatever it is

started  thank  you,  so,  these  are  approximations  to  149/17when  in  some  sense  best

approximations a later they will have book called (FL) gives when it is algorithm for doing this

convergent and use as them as approximations.

Because the number of civil days in a (FL) is in trillions the number of solar years in (FL) is also

in 43 lakh 20,000 years into 1000 and you need ratios of this to calculate the positions of sun. So,

those numbers fractions are very huge and you can always approximate them by fractions which

smaller denominators and the best approximations are what are provided by the continue traction

expansion of it.

And kind of a (FL) excels in giving this you make in use of this continue traction kind of results

yes sir (()) (22:47) 9/2 or 9/1 oh 9/1 sir, 8+1/1, 1+8+1/1 whatever written in the slide is always

more accurate than what I do on the board which is done at this for of the moment. Another

interesting thing just we connection with (FL) this previous convergent we wrote this relation

AjBj-1-Aj-1-Bj is -1 to the power j-1.

So, you have the relation you use this convergent 35/4,149 into 4-35 into 17 =1, so for this

149/17 and 35/4 this will be the 2 solutions for the (FL) involving 149 and 17. So, the entire



continued fraction theory is as old as Aryabhatta’s Aryabhatiya basically the entire thing is there.

Now coming to our problem solution of the (FL) showed that solution of the (FL) can always be

written as a periodic continue fraction.

(Refer Slide Time: 23:53)

Periodic means at the end of this whatever I have put in the bar will keep repeating each other.

(Refer Slide Time: 24:02)

In fact these all  1 lines quadratic  cell  which had a periodic continue traction expansion, the

period started right at the beginning right th=1,1, so it is nothing but 1 bar it is a period starts at

right at the beginning. So, all quadratic sides have a periodic continued fraction and vice versa



and root D is always of this forum with the last entry 2a0 if this is entry is a0, this called the

period, the period can be odd, period can be even.

And the penultimate convergent here at the end of the period will give you a solution on -1, if the

period is odd it will give the solution for +1, if the period is e1 if you obtain the solution for -1

you do (FL) and get the solution for +1, so if the period is odd then you will get the solution for x

square-D y square =-1 at the end of the period, so let us take this example x square-13 y square

=this is the given example given in all textbook.

Square root of 3 is 3+1over 1+ 1over 1+1 over1+1 over1+ 1 over 6 this bar means now again the

same thing will start here it will go on repeating itself it  is an irrational number so continue

traction is in finite but it is periodic you have to take this convergent, convergent at this point

3+1/1+1/1+1/1+1/1 stop it here then you will have A4/B4 which is you can see to be 18/5 in fact

we saw this  solution  yesterday while  discussing the  equation  x square-13 y square =-1,  the

solution by Bhaskara was also this 18 and 5.

Now doing (FL) of this with itself you will obtain the solution for k=1, so this Euler method or

we can call it Euler legrange method, legrange wrote down all the proofs.
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Now from phase simple kind continue traction you should go to something called semi regular

one how was the different instead of only +1 is occurring here, +1 and -1 can both occur here,

that is called a semi regular continued traction and certain mathematical conditions which we can

ignore something like this should be satisfy. So, the convergent of the semi regular continue

traction will involve this epsilons in their recurrence relations, we saw this recurrence relation in

(FL) then itself.

(Refer Slide Time: 26:47)

So, the first thing that (FL) did was to show that the Bhaskara method or the (FL) method at the

time of Krishnaswami Ayyangar he was not aware that there were people prior to Bhaskara were

done the (FL) method he of course mentions that Bhaskara is saying only that (FL). So, this must

be some method earlier  know to Indians, so he showed that the (FL) method corresponds to

expanding root D as a semi regular continued traction a0, a1, a2 are all given by our quantities

familiar Pi, Pi+1/mod Ki.

This epsilon i was also defined there, so you go back to that table you can immediately write

down the.
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So, root 67the Bhaskara’s continued traction, a0 is 8+1 over 5+1 over 2+1 over 1+ which column

I am writing 8, 5, 2, 1, 1, 7 okay. Course is around 16 okay (()) (28:08). So, 8+1 over 5+1 over 2

+1 over 1 +1 over 1 oh I am writing down the Euler Largrance, so I am this is let go back (FL),

mouse is refusing cooperate with me what give time.
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(Refer Slide Time: 28:52)

So, 8+1 over 5+1 over 2+ 1 over 2+ -1 over 9-1 over 2+ I will continue writing it here ½, 1/5,

1/16,  so  this  is  the  semi  regular  continued fraction  expansion notice  right  that  the  two -1’s

appearing here all of course this whole thing is periodic that will keep repeating itself, 5, 2, 2, 9,

2,  2,  5,  16.  (())  (30:05).so,  first  thing  Krishna swami Ayyangar’s showed one that  the  (FL)

method you can immediately write down this square root D as a continued fraction.

Next thing he pointed out that this simple continued traction algorithm can be viewed as a similar

to (FL) algorithm only you change the condition of Bhaskara that modulus of P+1 square-D

minimum you change it to the condition the D should be greater than Pi+1 square and D-Pi+1



square should be minimum, so the value of Pi+1 should be so chosen that it is less the square it is

less than D and it is closest to the value of D.

And if you change it another condition Pi+1-root D is minimum you obtain what is called the

nearest integer continue fraction we will see it later in the context of Narayana maybe if we have

time. So, now I am doing the (FL) algorithm to reproduce the Euler lagrange method so, what I

where is the differing to see where it is differing, it is differing these 2 places these 2 rows which

are highlighted those 2 rows are skipped in (FL).

So, how do we see that, so you remember this in the step 3 you have 5-7 and the solution is 90,

11 right and now what does (FL) give us, 5-7, 90, 11 now took 5 you could have added 2 or 9 or

16 that in the Euler Lagrange process 9 is bar, 9 square it is 67 that is larger the 9 square it is 81

that is larger than 67 so you have to choose only 2 which is lesser than 2 square is lesser than 67,

so amongst the allowed values, so here we have to put Pi+1 to be 2.

And here also 9 is appearing in this step, so these are 2 steps here in (FL) which are not allowed

in the Euler Lagrance in both these cases epsilon is -1, whenever P square is greater than D

epsilon will be -1, that is the sign that a step in which Euler lagrance is being skipped by (FL) at

that point, so the -1’s are hallmarks of the (FL) process. So, we remember there what was the

next step in (FL) next step is 221 and the step after that is 1899, remember these 2.

We are going to see the Euler Lagrange process here, so 90 it comes 131 then goes to 221 then

goes to 1678, then goes to 1899. So, 2 extra convergent are added 2 extra steps are added in the

Euler Lagrange process after all historically he did come 500 years or 600 years apt of the (FL)

process, so it has to have that much more weightage unit.
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So, this sq root of 67 can be expressed as the simple continued traction it will look like this

written as a semi regular continue traction to look like this, so the period here is 1, 2, 3, 4, 5,6, 7,

8, 9, 10 the period here 1, 2, 3, 4,5, 6, 7, 8, so 2 steps are eliminated in 67, so we can look at the

great the old prime 61.

(Refer Slide Time: 33:38)

So, in the Euler Lagrange process it will take 22 steps (FL) would have taken 14 steps .
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But actually you do not need to do all the 22 steps the simple continue traction will terminate

here when you get -1, an =-1, so it is a square root of D which has n r the period. So, (FL) is

indeed a hot subject, so so it has an odd period you are getting this -1 it will take 11 steps and to

get that 11 steps 1, 2, 3, 4 extra steps Euler Lagrange adds (FL) will come in 7 steps instead of

11, so this we can see by looking at the 2 continue tractions.
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The simple continued traction has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11 entries for 61 there is 1, 2, 3,

4, 5,6, 7 entries in the (FL) so it the period has 7 that is the seventh step this has 11 steps and

these results 4-1’s are appearing those are precisely the points where the Pi crossing root D Pi



square is crossing root D okay. So, we are said enough about the comparison of the 2 we will say

something in the end.

So, Krishnaswami Ayyangar then does various things that  people normally do with continue

tractions . he first showed that the Euler Lagrange formalism can be viewed as a modification of

the (FL) and he also showed that (FL) can be viewed as a generalisation of the continue traction

instead of using a simple continue traction you use a semi regular continue traction where +1 and

-1 are the both the allowed.

Now to give  direct  algorithm for  the  he called  this  continue  tractions  that  come in (FL) as

Bhaskara continue tractions now a days they are called the nearest square continue tractions, so

they can be called Bhaskara or the nearest square continued tractions and he gave a general rule

that whenever you have quadratic cell I explained you the simple continued traction algorithm

take the integral part subtract the integral part from the number take the reciprocal part.

Again take the integral part subtract that from the number, so like that go on that is the simple

continued traction algorithm. So, for the Bhaskara continued traction he gave an algorithm not

for a general real number he gave the algorithm for a quadratic cell because that is where the

(FL) process is appearing it is appearing in the context of a root D. So, if you write a root D as a

Bhaskara continue traction the total coefficient will come out to be quadratic cells like this.

Now see with the particular property that P and Q and D- P square by Q are integers which are

prime to each other that is called the standard form of itself. So, at any step doing the Bhaskara

process and doing the simple continued traction process how do they differ, so to show that you

take this quadratic side writing this way where a is the integral part of P+ root D/Q and (())

(36:54) quadratic cell you write it as just write it as a+1 whatever in means you write it in the

quadratic side form that is how it will look.
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And so Krishnaswamy Ayyangar said if P prime square-P is less than P double prime square-D or

when they are equal if Q is less than 0 choose a and set epsilon =1, in the other case choose a+1

and set epsilon =-1 and then he showed the relation between the quantities which appear in the

(FL)  algorithm and the  quantities  this  k  and the  Q which  appear  in  this  continued  traction

expansion. So, you choose a when P prime square-D is less than p double prime square-D that is

all that okay.
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Next he also studied the periodicity properties of the continued traction, now just look at this let

us look at the case of 61.
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You see there is a complete periodicity here a1 to ah-1, ah-1 to a1 and a 2a0, a1 to ah-1, ah, ah-1

to an and a 2a0, so similar periodicity exist for the Bhaskara continued traction also 
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For  most  of  the  situations  which  Krishnaswami  Ayyangar  called  as  type  1  where  certain

condition  does  not  happen  certain  kind  of  complete  quotients  do  not  occur  the  Bhaskara

continued traction  have the same symmetry. But in  some particular  cases  they have a  more

complex symmetry.
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And these are  examples  where the symmetry  is  more complex 29,  53,  58,  97 the  Bhaskara

continue traction does not have the kind of symmetry that the simple continue traction has it has

a more complex symmetry.

(Refer Slide Time: 38:52)

Similarly  one  can  identify  when  you  are  doing  the  continue  traction  expansion  when  the

midpoint occurs Euler had identified that . So, similar midpoint criteria have been found out in

recent times Krishnaswami Ayyangar did not write it his time in the last 5, 6 years there are many

others were working on this kind of problem they have identified the midpoint.
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In fact this entire subject of x square-D y1 square is an equation which is of great interest even

contemporarily one is it is a very is one of those algorithms which are non polynomial time that

is the amount of time that is taken to solve this in general is of the order of D times D to the

power square root of D, so it is a non polynomial kind of an algorithm. So, there is even now a

quantum algorithm by Halgrim which will solve this in a polynomial time.

Of course that can be implemented only in a quantum computer which may come in the next 200

to 300 years. Then there were also many other interesting properties of this equation several

books are written few of them do mention that brahmagupta and Bhaskara did solve and some

people say partially fully some books do explain fairly nice way the way the equation was solved

by (FL).

But the most important thing for us is that the old method was indeed the best method the (FL)

method as I said showed you does keep various steps, so in that sense it is optimal whenever you

have an algorithm one of the important thing you want to see is whether you are doing it in the

minimal amount of number of steps and it happens in many cases that the period of the Euler

Lagrange continue traction can even be double or almost double the period of the Bhaskara have

given 5 cases.



Here is the case where the period is 3 there, period is 5 in the case of Euler Lagrange or Bhaskara

the period is 3, a for 44 the Bhaskara is period is 4 the Euler Lagrange are the simple continue

traction the period is 8 it  is in the double the number of steps and if  you see wherever this

happening the number of negative signs are a indicator of the number of steps which are being

skipped.

I am seeing you flight but I have to complete the yes sir (()) (41:21) the initial feasible point at

which the Bhaskara’s thing starts is closer, no both start from 10 not that way we when they take

the first integer a no even that is not so the algorithm is more optimal it is allowing both Pi+1

larger than square root of D yes and Pi+1 lesser so allowing both the possibilities that it makes

you go closer in a more nicer. 

In fact even this (FL) even this you see in each of this gap what I was doing is I was taking the

remainder instead of taken do the take the nearest integer then the number of steps needed in

refusing even a rational  number into a continue traction will  be less it  will  be less than the

number of steps needed when you are always taking lower they devisor 2 the remainder to be

positive.

The remainder can be taken to be both positive and negative to reduce the number of steps, so

this is what is being systematic but it cannot be arbitrary what (FL) was did was they try to + and

–  arbitrary  Bhaskara  or  (FL)  or  whosesoever  discover  (FL)  prior  to  him  had  a  systematic

algorithm for doing this. Now there is another interesting property discuss by a famous Swedish

mathematician (FL).
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That the issue is this whenever there is a sequence of what are called the unit quotients will go to

the previous step then you will see, the moment I am able to reach okay, take the simple continue

traction you see there is a set of 1, 1, 1, 1 appearing here right whenever these are this partial

quotients whenever such ones appear the (FL) get rids of, gets rid of them. So, these are uni

sequences here there is a uni-sequence of length 4, here also there is a uni-sequence of length re

followed by uni-sequence of length re.

Here there is a uni-sequence of length 6, so whenever there is a uni-sequence of parital quotients.

So, whenever this a0, a1, a2 that you are see when they become 1 (FL) kills them that step. So,

okay so, whenever you have a uni-sequence of partial quotients of length m the (FL) process

keeps exactly n/2 steps if n is even and n+1/2 steps if n is odd. So, that is at the heart of the (FL)

process.

And (FL) who sort of studied this uni-sequences in great detail a Swedish mathematician I was

telling you . He showed that the remaining convergent are actually the optimal convergents in the

sense that Bi modulus Ai-Bi root D they are minimal. So, of the n+1 convergence possible (FL)

picks out the closest convergent and throws away the ones which are not that close.



Of course even simple can unit tractions all convergent are fairly close but (FL) picks up the

ideal or the most optimal ones amongst them and that is what (FL) showed and he generalised

the theory to what are called optimal continued tractions for arbitrary real numbers.

(Refer Slide Time: 44:38)

So, recently Mathews and that is a group in Australia were working (FL) systematically they

were the people who showed the midpoint criteria and things like that, so they are try to estimate

by computer simulation take the ratio of number of steps Euler lagrange and number of steps

taken by the (FL) algorithm divide one by the other and the ratio is converging to something like

log of 1+ root 5/2 or 0.694 etc.,

So, something like 30 % saving his what could be achieved there is a great mathematician called

(FL) about 60, 70 years ago he was known of one of the pioneers in computational number

theory. So, he wrote in mathematical reviews in 1940’s early 41 or 42 a review of the paper of

for Krishnaswami Ayyangar, incidentally Professor Krishnaswami Ayyangar is the father of the

more  well  know  figure  A.K  Ramanujan  the  English  professor  former  professor  English  in

Chicago.

So, he wrote that not only does it destroy the symmetry that simple continued traction have and

the few steps that it seems to gain are not really worth the amount of distraction of the beautiful



theory of the simple continued fractions that we have arrived with. In fact more or less a similar

comment is made by the great mathematician (FL) in his book on history of number theory.

(FL) even says that this name pell’s equation is very convenient because it is very definitive I do

not know what it means and so we have to continue using it while referring to this beautiful

equation  anyway so this  is  the kind of  estimate  numerical  estimate  or  else  some theoretical

estimates can also be made for the optimality.
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So, these are Krishnaswami Ayyangar’s papers the last one appeared in the journal of mysore

university in 1941 .
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This (FL) monographs on history of number theory this is the famous paper of Selenius he has

written 3, 4 papers in German and I think Swedish also earlier, this is the paper of Mathews,

Robertson and white and this book has several papers on nearest square continue tractions and

Jacobson and William are they are experts in the study of Pell’s equation this is a book which

runs above 700 pages in the discussion of Pell’s equation.

So, it is a very interesting subject I have try to present you what is the mathematical sort of art of

the (FL) process which goes back to (FL) and Bhaskara. Narayana also has something to say on

me which I will briefly quiet you tell you during the talk on that thank you.


