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Measure and Integration 

Prof. Inder K. Rana 

Department of Mathematics 

Indian Institute of Technology, Bombay 

Lecture No. # 09 

Extension of Measure 

Welcome to lecture 9 on Measure and Integration. As you recall, we have been looking 

at classes of subset of a set X called semi-algebra, algebra, sigma algebra and so on. 

Then, we also looked at set functions defined on these classes with properties. So, in 

particular, we defined the concept of measure. 

A measure is a set function defined on a collection of subsets, such that the measure of 

mu of the empty set is equal to 0 and mu is countably additive. Today, we are going to 

start the process, which is called extension process. So, the topic for today’s discussion is 

going to be Extensions of Measures.  

(Refer Slide Time: 01:08) 

 

Basically, the question arises from some of the properties on the real line. Let us look at 

mathematically, the question; we know that notion of length is defined for all intervals; 
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so, the question is - can the notion of length be extended to arbitrary subsets of the real 

line? That means, can we define the notion of the length for an arbitrary subset of the 

real line? Of course, it should be compatible with the definition of length for the interval. 

So, the need for such an extension is – one, of course it is purely mathematical curiosity 

that we have the notion of length for an interval; can we define it for an arbitrary subset? 

Other reason which is more important is that, it arises from some problems in Riemann 

Integration. 

The concept of Riemann Integral, which is defined for a class of functions, fails to satisfy 

some properties like the fundamental theorem of calculus does not hold for Riemann 

Integrable functions. So, in order to remove those difficulties, one started looking for an 

extension of Riemann Integral and that led to the problem of extending the notion of 

length from a class of subsets, that is, intervals to all subsets is possible. If you are 

interested in looking at more details about why Riemann Integral should be extended to a 

wider class of functions and how that leads to the concept of extending the notion of 

length to arbitrary subsets, read chapter 1 and 2 of the text book that we have mentioned 

earlier, namely: An Introduction to Measure and Integration by myself- Inder K. Rana 

(Refer Slide Time: 03:11) 

 

So, let us start with the question, what is an extension? So, let C1 and C2 be two classes 

of subset of a set X and let us assume C1 is a subset of C2. We have two measures or two 
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set functions mu1 and mu2. mu1 is defined on C1 and mu2 is defined on the collection 

C2. 

So, mu1 and mu2 are set functions. mu1 is defined on C1 and mu2 is defined on C2 with 

the property that mu1 on C1 is same as mu2 for subsets of C1. mu1 and mu2 agree on 

subsets of C1.We call C1 as a sub collection of C2. So, in such a case, we call mu2 as an 

extension of mu1. On C1, which is a smaller class, mu1 and mu2 are same. So, mu2 is 

defined on a bigger class that is C2. So, we say C2 or mu2 is an extension of the measure 

of the set function C1. 

(Refer Slide Time: 04:24) 

 

So, the problem is given a measure mu, we start with a measure mu on a semi-algebra C 

of subsets of a set X. We want to show that there exists a unique extension to a measure 

mu tilde on A of C, the algebra generated by it. So, this is going to be our first step of 

extension theory, namely: given a measure on a semi-algebra, we are going to extend it 

to a measure on the algebra generated by that semi-algebra. 

Let us see, how this process is carried over. So, recall that a set E in the algebra is 

generated by a semi-algebra. We have characterized such sets and it can be given by a 

representation E is equal to union i from 1 to n Ei. So, every set in the algebra generated 

by a semi-algebra is a finite union of sets form the semi-algebra; in addition, they are 

pairwise disjoint. So, this was the result that we had proved. The algebra generated by a 

semi-algebra is nothing but all finite disjoint union of sets in the semi-algebra. 
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(Refer Slide Time: 05:51) 

 

So, let us take any set E in the semi-algebra and define mu tilde of E to be a sigma i from 

1 to n mu of Ei. The claim is that, this is the unique extension which we are looking for. 

(Refer Slide Time: 06:08) 

 

So, let us see, how do we do it? So, we have got mu on C and this is a semi-algebra. We 

define mu tilde on the algebra generated by C. So, this algebra (Refer Slide Time: 06:29) 

is generated by C and we want to define a function here, a set function, which should 

look like an extension. So, if E belongs to F of C, then we know this set E looks like a 

disjoint union of element Ci and i equal to 1 to n for sum n, Ci belonging to C. Now, why 
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we defined it the way we have defined mu tilde? See, if mu tilde of E is going to be 

defined and it is going to be measured on the algebra F of C, then we know that every 

measure is also finitely additive. 

So, by the finite additivity property of mu tilde which we have not yet defined, but the 

finite additivity property will say that this should be equal to mu tilde of the union Ci i 

equal to 1 to n. This being finitely additive, we should have i equal to 1 to n mu tilde of 

Ci, but mu tilde is going to be an extension. So, that means mu tilde on Ci is same as mu 

tilde Ci; so, this is same as 1 to n of mu of Ci .So, that actually fixes what is going to be 

the definition of mu tilde of E. If E is a finite disjoint union of elements, which is Ci then 

mu tilde of E must be given by this (Refer Slide Time: 08:05). That also shows the 

uniqueness of the definition of mu tilde. So, mu tilde should be defined by this (Refer 

Slide Time: 08:14) and that is necessary. We will show that this definition also works. 

(Refer Slide Time: 08:23) 

 

So, let us prove this property that mu tilde… .So first, we want to show that mu tilde is 

well defined. What does that mean? Suppose E is a set which is in F of C, then we know 

that E can be written as a finite union of set Ci is finite disjoint union of set Ci

It is possible that it can have some other representation. So, it is possible that the results 

are represented as j equal to 1 to m of some sets D

 in C. 

i, where Ci‘s belong to C and Dj‘s also 

belong to C. So, to show them… because our definition is depended on the 

representation, we should show that mu of Ci summation i equal to 1 to n is same as 
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summation mu of Dj j equal to 1 to m. This (Refer Slide Time: 09:28) we should show 

and then only we can claim that our function mu tilde is well defined. 

So, let us show this. (Refer Slide Time: 09:43) Note, because E is given by this two 

different representations, I can write union Ci i equal to 1 to n also as union Ci 

intersection union Dj‘s j equal to 1 to m. So that is equal sigma; oh sorry, that is equal to 

union i equal to 1 to n union j equal to 1 to m Ci intersection Dj  and similarly, union 

Dj‘s j equal to 1 to m is also represented by the same way because the two sets are same. 

So, it is the same representation. 

(Refer Slide Time: 10:41) 

 

Now, let us compute. Sigma mu of Ci i equal to 1 to n. I can write it as sigma i equal to 1 

to n and this mu of Ci is disjoint union of Ci intersection Dj. That is why, here we are 

using this representation (Refer Slide Time: 11:01) that we just now wrote j equal to 1 to 

m. This is a disjoint union; Ci‘s belong to the semi-algebra; Dj‘s belong to the semi-

algebra. So, this intersection belongs to the semi-algebra and their union is Ci

So, I can write this sigma equal to j equal to 1 to m mu of C

 which is 

also in the semi-algebra and mu is a measure on the semi-algebra. So, this is also finitely 

additive and it is i equal to 1 to n.  

i intersection Dj. Similarly, 

we can also write j equal to 1 to m mu of Dj to be equal to summation j equal to 1 to m 

and mu of Dj. So, that I can write as union of Dj intersection Ci i equal to 1 to n. Now, 
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again by finite additivity property, this is (Refer Slide Time: 12:11) j equal to 1 to m 

sigma i equal to 1 to n mu of Dj intersection Ci. 

So, look at this equation 1 (Refer Slide Time: 12:21) and look at this equation 2 (Refer 

Slide Time: 12:24). Equations 1 and 2 imply that sigma i equal to 1 to n mu of Ci is 

equal to sigma j equal to 1 to m mu of Dj and that implies mu is well defined. So, what 

we have shown is the following: If we take any set in the algebra generated by the semi-

algebra and that has got a representation in terms of the elements of the semi-algebra. So, 

any element E in the algebra generated by the semi-algebra can be represented as a finite 

disjoint union of elements in the semi-algebra; Say Ci. So, pick many such 

representations and define mu tilde of E to be equal to sum of a mu’s of this pc Ci sigma 

i equal to 1 to n. 

It does not matter, which representation you choose. You will always get the same sum. 

So that means mu tilde of E is well defined. Now, let us look at the next property namely 

that mu tilde, which is defined on the algebra generated by the semi-algebra is finitely 

additive. 

(Refer Slide Time: 13:54) 

 

So, let us prove that property. So, we want to prove that mu tilde is finitely additive. So, 

to prove that what we have to show? So, let E be written as a union of Ej j equal to 1 to n, 

where each Ej belongs to the algebra generated by C and of course, E also belongs to the 
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algebra generated by C. We want to show to that E mu tilde of E is equal to summation j 

equal to 1 to n mu tilde of Ej. so, this is what is to be shown (Refer Slide Time: 14:41) 

Now, to show any such property, we have to go back to the definition of mu tilde of any 

set. Since, E belongs to the algebra generated by C and that implies… Let us write each 

Ej belongs to the algebra. So, each Ej can be written as a disjoint union of Ekj k equal to 

1 to nj, where Ekj belong to C for every j and k. 

So, every element Ej is in the algebra generated by C. so, it must be a finite disjoint 

union of elements of C. So that implies that the union Ej j equal to 1 to n is equal to 

union j equal to 1 to n union k equal to 1 to nj of Ekj. This (Refer Slide Time: 15:58) is 

our set E. E is equal to union and so, we have represented E as a finite disjoint union of 

elements of C. So that implies that mu of E or mu tilde of E. You can choose any 

representation and in particular, this (Refer Slide Time: 16:16) so, it is equal to 

summation j is equal to 1 to n summation k equal to 1 to nj of mu of Ekj . 

(Refer Slide Time: 16:32) 

 

Now, using the finite additive property of a mu, we will write this. So, this is equal to… 

Look at this sum, (Refer Slide Time: 16:43) it is nothing but j equal to 1 to n mu tilde of 

Ej. That is by definition because Ej is union of Ekj over k. So, by definition, I can take 

that representation and say this is equal to this. So, that says mu tilde of E is equal to this 

(Refer Slide Time: 17:07) and hence mu tilde is finitely additive. We have proved that 

mu tilde is finitely additive and uniqueness, we have already shown. Thus, we have 
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shown that a measure, which is defined on a semi-algebra can be in a unique way and 

can be extended to the algebra generated by it. 

Basically, the idea is- because every element… Intuitively, keep in your mind that mu of 

a set is the size. So, any element in the algebra generated by the semi-algebra is a union 

of disjoint pieces in the semi-algebra and size of each of them is known. So, the size of 

the union must be equal to sum of the sizes of the individual pieces because they are 

disjoint. That was the idea and that helped us to extend a measure from a semi-algebra to 

the algebra generated by it. So that is the first step of the extension theory and as a 

consequence, the length function can be extended and that we have already shown. 

Length function can be extended from the collection of all intervals to the collection of 

finite disjoint union of intervals, that is, the algebra generated by it. Now, we will go to 

the next step of the extension. So, we will start with a measure, which is defined on a 

algebra. We want to try extending it to the sigma algebra generated by it. 

(Refer Slide Time: 18:48) 

 

So, the next step in the extension theory is going to be- For example, we would like to 

say, can the length function can be extended to all subsets of the real line? We have done 

it from intervals to the algebra generated by intervals. There is a theorem by 

mathematician called S.M. Ulam and that theorem was proved in 1930. It says that under 

the assumption of “continuum hypothesis” and it is not possible to extend the notion 

length to all subsets of real line. This is a very important theorem. So, it uses two things: 
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namely, one is what is called continuum hypothesis. I will not go into the discussion of 

what is called continuum hypothesis at this stage. I would stress that one should read 

about this theorem from the text that we have just now mentioned, An Introduction to 

Measure and Integration. So, this is an important theorem, which says as a consequence, 

it is not possible to extend the length function to all subsets of real line. 

(Refer Slide Time: 20:02) 

 

So, the question comes, if we cannot extend… so, in general, given a measure mu on a 

algebra of subsets of X, we would like to extend it to a bigger class than A. It cannot be 

done for all subsets, but let us try to intuitively follow our idea of measuring the size of 

an object. So, intuitively, given a measure mu on an algebra A, a collection of a subsets 

of a set A of set X, Mu of A is the size of the set A, which you can measure. Given an 

arbitrary set E, one may not be able to measure its size exactly using the mu, but we can 

at least try to approximate.  
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(Refer Slide Time: 21:00) 

 

Let us define what is called as the outer measure induced by a measure? So, let us take 

mu - an algebra of subsets of a set X, A - an algebra of subsets of a set X, and mu - a 

measure defined on it. For any subset E in X, let us define, what is called mu star of E. 

so, what is mu star of E? What we do is given the set E, here is a set E and you cover it 

by sets Ai’s in the algebra. You cover it by the sets in the algebra. Take a covering of E 

by the sets Ai’s in the algebra. You know, what the size of the set Ai is. Let us take the 

size of the set Ai and add up all the sizes. So, what do you think this sum (Refer Slide 

Time: 21:48) will represent? In some sense, this sum will represent the approximate size 

of the set E. Of course, it depends on the covering A

Once again, let us recall and look carefully at what this mu star is? Given a set E, 

arbitrary subset in X. Cover it by elements A

i. 

Now, what we do is - we take the infimum of all these approximate sizes. That means, 

we take the infimum of these numbers or all possible coverings of set E and define that 

number as mu star of E. We will try to analyze what are the properties of this mu star of 

E? So, first of all, let us give it a name and this mu star of E is called the outer measure 

induced by mu. Why the outer? Because we are covering E by sets, these things cover E. 

(Refer Slide Time: 22:35) May be we are going outside E. So, this is an outer measure 

because we are trying to measure the size of this in terms of induced by mu because in 

terms of the known size is mu. 

i, whose sizes you know. So, take a 
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covering of E by the elements in the algebra. Look at the sizes of Ai‘s and add up all this. 

(Refer Slide Time: 23:17) That is the sum, mu Ai and that is the approximate size. Take 

the infimum of all these approximate sizes and that we are going to call it as outer 

measure induced by.  

(Refer Slide Time: 23:29) 

 

 So, the first property we want to say is - mu star is well defined. Well, what is the 

meaning of mu star is well defined? Let us go back to the definition 
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(Refer Slide Time: 23:37) 

 

This is mu star, it is infimum of some numbers and infimum of a subset of numbers exist 

in the real line. If it is non-empty, it should be bounded below. Of course, all these 

numbers are going to be bounded below because all are non-negative numbers. So, it is 

bounded below by 0. Why is this collection non-empty? Because A is an algebra and so, 

the whole space belong to it. So, keep in mind that A is an algebra. In the definition of an 

algebra, the whole space X is an element. So, E is covered by X itself and X belongs to 

the algebra.  

At least, there is one number in this collection over which you are taking infimum 

namely mu of X. It is a non-empty collection of extended real numbers. So, infimum 

always exist and hence, mu is a well-defined number. Of course, it could be equal to plus 

infinity. Keep in mind the numbers here; they are all extended real number. So, this set 

(Refer Slide Time: 24:56) is a collection of non-negative extended real number and their 

infimum always exist and infimum could be equal to plus infinity. 

 

 

 

 



 14 

(Refer Slide Time: 25:04) 

 

We have shown a mu tilde is mu star. The induced outer measure is well defined and so 

mu star is a well-defined set function on the class of all subsets of the set X. We want to 

show some properties of it: The first property is - mu star of empty set is equal to 0 and 

that is true because empty set belongs to the collection A in the algebra and mu star there 

is equal to mu of A and that is equal to 0 and for any set that is a infimum of non- 

negative numbers so, this infimum has to be bigger than or equal to 0. So, that first 

property is obvious. The Second property - we want to check that mu star is monotone. 

So, let us check that mu star is a monotone function. 
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(Refer Slide Time: 26:00) 

 

So, let A and B be subsets of X and A is a subset of B to show mu star of A is less than 

or equal to mu star of B. Now, what is mu star of A? In all these properties, we are going 

to use the definition of infimum, critically. So, what is mu star of A? Mu star of A is 

defined- as by our definition, it is a infimum over sigma mu of Ei‘s, say 1 to infinity, 

where this set A is contained in union of Ei‘s disjoint union. Of course, Ei‘s belong to 

the algebra, what is mu star of B? That is infimum i equal to 1 to infinity of mu of Fi‘s, 

where B is contained in union of Fi‘s i equal to 1 to infinity disjoint union, where Fi‘s 

also belong to the algebra A.  

Now, if A is given to be a subset of B and B is covered by union j equal to 1 to infinity, 

then that implies A is also inside. So, this (Refer Slide Time: 27:55) is also inside Fj

That is a simple property about infimum. If you are taking a infimum of a larger 

collection, then that tends to be smaller than the infimum over a smaller collection. So, 

. So, 

what we are saying is every covering of B is also a covering of A. This is the infimum 

(Refer Slide Time: 28:07) over all possible coverings of B and this is the infimum over 

all possible coverings of A. Every covering of B is also a covering of A. (Refer Slide 

Time: 28:16) Here, we are taking infimum over a larger set and here we are looking at 

the infimum over a smaller collection of numbers. Whenever, you take infimum over a 

smaller collection of numbers, that is always bigger than or equal to infimum over a 

larger collection of numbers. 
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that property implies that mu star of A has to be less than or equal to mu star of B. That 

is purely a property of infimum over what collection you are taking. Every covering of B 

is also a covering of A. so, coverings of B form a subset of coverings of A, and hence 

this property is true. That is the monotone property, namely mu star is monotone. 

(Refer Slide Time: 29:13) 

 

Let us look at the next property, namely; mu star is countably sub additive.  

(Refer Slide Time: 29:22) 

 

 We want to prove mu star is countably sub additive. So, that means, we have to show 

that if A is a subset of X, A is contained in union of Ai‘s. Ai is also a subset of X and 
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then we want to show that mu of A is less than or equal to summation mu of Ai’s. So, 

this is what is to be shown. (Refer Slide Time: 30:08) 

Now, let us observe the note. We want to show one number mu of A is less than or equal 

to sum of these numbers. If one of these numbers is equal to plus infinity, then 

obviously, this property is true. So, if mu of Ai is plus infinity for some i, then clearly 

mu star of A is a number, which is less than or equal to plus infinity, which is at least one 

of the mu Ai’s. So, that is less than or equal to mu of… So, it is mu star we are looking at 

and let us just write mu star. We are trying to prove that mu star is countable. So, mu star 

of Ai is equal to 1 to infinity. So, what we are saying is this inequality is obvious, if one 

of the terms in this sum is equal to plus infinity. 

(Refer Slide Time: 31:22) 

 

So, let us take the case when all of them are finite. Let us assume, suppose, mu star of 

each Ai is finite for every i. Now, what is mu star of Ai? Mu star of Ai is infimum for a 

certain collection. Here, we are going to use the properties of something, both being 

infimum and finite. So, let epsilon greater than 0 be arbitrary and of course fixed. You 

choose arbitrarily and fix it and mu star of Ai is the infimum for all summations in 

approximate sizes, then there exist at least one covering. So, there exist sets say, Aji j 

equal to 1, 2 and so on. In the algebra A, such that this Ai is contained in this disjoint 

union of Aji’s. 
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So, mu star of Ai, which is infimum. If I add the small number epsilon to this, (Refer 

Slide Time: 32:38) it becomes bigger than summation mu of Aji’s j equal to 1 to infinity. 

Let me stress here, this is the kind of definition or this is the kind of analysis we will be 

coming across and we will be doing it again and again. So, let us be very clear about this. 

We have got some number, which is the infimum over some collection. If this infimum is 

finite, then, infimum plus a small quantity epsilon cannot be the infimum because that is 

on the right side of it. So, that cannot be the infimum of that collection. 

Otherwise, Alpha plus… If alpha is infimum, then alpha plus epsilon will be the 

infimum, which contradicts the definition of the infimum. So, if alpha is the infimum, 

alpha plus any small number epsilon cannot be the infimum. What does that mean? That  

means, there must be a member of the collection over which you are taking infimum so 

that alpha plus epsilon becomes bigger than that number in the collection, over which 

you are taking infimum; that is why we are saying because mu star of Ai is finite, given 

epsilon, the infimum plus epsilon must be bigger that member of the collection over 

which you are taking infimum. (Refer Slide Time: 34:14) what is the collection that is 

obtained by taking a covering a disjoint covering of a disjoint covering not only disjoint 

actually any covering we are taking so any covering and such that this is true. 

So, given epsilon, there exists a covering Aji j equal to 1 to infinity of Ai such that mu 

star of Ai plus epsilon is bigger than this (Refer Slide Time: 34:39) and this happens for 

every i. So, if we add up these equation over i, summation over i is equal to 1 to infinity 

mu star of Ai plus sigma alpha over i is bigger than sigma over i equal to 1 to infinity 

sigma over j equal to 1 to infinity mu of Aji and that is what we wanted. Mu star of Ai is 

bigger than something and we have got that kind of inequality. 

Now, the problem is we are going to add epsilon infinite number of times. So, this will 

tend to become infinity and we do not want that. So, we will go back and refine our 

estimates. So, given epsilon bigger than 0 and this we can do it for any epsilon. In 

particular, whenever you are looking at Ai 

So, we will change our epsilon and that is true for every epsilon. In particular, it should 

be true for this (Refer Slide Time: 35:52). So, what we are saying is given epsilon there 

is a covering such that A

for a given epsilon, there should exist a 

covering, such that if we refine, it will make it 2 to the power i. 

i is covered by that collection. mu star of Ai plus epsilon 
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divided by 2 to the power i is bigger than the approximate size, that is, mu summation 

mu of Aji and this is for every i. Now, if I add epsilon by 2 to the power i. So, that 

means, what we have got is now convergent and that means sigma i equal to 1 to infinity 

mu star of Ai plus epsilon is bigger than this sum. 

Now, note that if i and j both vary, this is for every i (Refer Slide Time: 36:40). Now, if I 

take the union over i’s  and that will be union over this. So, I will get a covering of union 

Aj’s, which will be covered by this. A is inside this and what we are claiming is; this is 

bigger than mu star of A because A is contained in union over i union over j Aji and is 

Aji belong to C. So, A is covered by this countable union and this (Refer Slide Time: 

37:18) is one approximate size for mu of A and that is always bigger than or equal to mu 

star of A because of infimum. (Refer Slide Time: 37:26) So, this quantity implies that 

this is always bigger than this. So, I can claim that mu star of summation is bigger than 

this quantity. 

(Refer Slide Time: 37:45) 

 

So, now this epsilon is arbitrary as it was fixed arbitrarily. So, I can let that go to infinity. 

One writes, let epsilon go to 0. We have sigma mu star of Ai i equal to 1 to infinity. This 

epsilon becomes zero, eventually. Now, I will write bigger than or equal to because in 

the limit, it can become bigger than equal to mu star of A. Hence, mu star is countably 

sub additive and so that we have proved countably sub additive. I just want to go through 
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the proof of this once again because this is an important kind of analysis. We will be 

doing it again and again. 

 

 

(Refer Slide Time: 38:43) 

 

Let us just revise the proof once again. Mu star is countably sub additive. To show that 

mu star is countably sub additive, we have to show that if A is a subset of X and A is 

contained in union of Ai and Ai is contained in X then, I have to show that mu star of A 

is less than or equal to summation mu star of Ai. Now to show this, the first observation, 

which we should keep on mind- whenever, we are trying to show that one number is less 

than or equal to summation of a collection of numbers, then an obvious case may arise 

namely, one of the numbers may be equal to plus infinity. So, if mu of Ai

So, the obvious case is- mu star and then mu star of A

 is equal to plus 

infinity for some i, then clearly this side is equal to plus infinity and mu star of A is 

always less than or equal to plus infinity. So, we get mu star of A less than or equal to 

plus infinity and which is always less than this sum. So, it means that property is true. 

i is finite for some i. So, what is 

the other possibility? Other is that mu star of Ai is finite for every i (Refer Slide Time: 

39:52) Now, here is the main part of the construction that we are going to use, namely: it 

is an infimum, which is a real number. So, given epsilon is bigger than 0 arbitrary. We 
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can find covering Aji of the set Ai, such that mu star of Ai plus this small number and 

that small number will make it dependent on i. The stage at which you are doing epsilon 

divided by 2 to the power i bigger than the approximate sizes over which you are taking 

the infimum. So, once again the property of infimum being a real number is used here 

and nothing more than that. So, once that is done, you add both sides and this is for every 

i. Take the summation on both sides and so summation mu star of Ai plus summation of 

this over i is less the is bigger than summation of mu of Aji. Now, this is a convergent 

series, (Refer Slide Time: 40:56) its sum is equal to epsilon. This is mu star of Ai 

summation plus epsilon and this is the quantity on the right hand side (Refer Slide Time: 

47:06), is a approximate size of A, that is, this is bigger than or equal to mu star of A. 

Mu star of A is infimum over all such numbers because A is covered by union over i 

union over j. Ai is covered by Aji‘s. so, union over Ai covered by this union and A is 

inside it. So, this implies that summation mu star of mu of Aji‘s summation over i and j 

is bigger than mu star of A. Once that is done, it means that we are letting epsilon go to 

0. So, you get this quantity that says mu star is countably sub additive. 

So, we have proved this property that mu star is countably sub additive. Now, the only 

thing left to be shown is that mu star actually is an extension otherwise, all this process 

will be a waste.  

(Refer Slide Time: 42:16) 
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So, we want to claim that mu star is indeed an extension of mu. mu star is not countable 

additive, but at least we should check it is an extension and it is countably sub additive 

and that we have already checked. We want to check that mu star of A is equal to mu of 

A, if A is in A; to check that, let us look at the proper definition.  

(Refer Slide Time: 42:46) 

 

We had mu star of A is equal to infimum over summation mu of Ai i equal to 1 to 

infinity, where A is contained in union of Ai and Ai belong to the algebra A. If A 

belongs to the algebra, then A is actually equal to A. So, A is contained inside A and this 

is one of the elements here in this covering, A itself covers it. So, it will appear in one of 

the element over which you are going to take the infimum. 

So, that implies mu star of A, which is the infimum less than or equal to mu of A and 

that property is by the shear fact, that A is covered by itself. A is in the algebra, that is, 

we want to prove the other way round, inequality to show that mu of A is less than or 

equal to mu star of A. once again, we want to show that one number is less than the other 

number. So, there is an obvious possibility of case one - mu star of A is equal to plus 

infinity. In that case, this is plus infinity and mu of A is always less than or equal to plus 

infinity, which is equal to mu star of A. So, the obvious case is when mu star of A is 

equal to plus infinity. Let us look at case two: mu star of A is finite. 
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(Refer Slide Time: 44:45) 

 

In that case, we are going to use the definition of infimum. So, mu star of A is the 

infimum of all possible approximate sizes, summation and so on. Let epsilon greater than 

0 be arbitrary, then there exists a covering. So, there exist some sets Aj belonging to the 

algebra, such that A is contained in the disjoint union of Aj. The infimum says, the mu 

star of A plus epsilon cannot be the infimum and that has to be bigger than summation 

mu of Aj so that at least has one such covering possible. (Refer Slide Time: 45:39) This 

is infinity and it is not necessarily disjoint. We can make it and we will see it later on. 

So, this is finite. Now, note that A is contained in union of Aj and all of them are 

elements in the algebra. We assumed A is in the algebra and so everything is in the 

algebra. Mu is a measure and we showed every measure implies mu is countably sub 

additive. That implies mu of A is less than or equal to summation mu of Aj j equal to 1 to 

infinity. 

So, look at this equation 1 (Refer Slide Time: 46:26) and look at this equation 2. What 

does 1 and 2 imply? Mu star of A plus epsilon is bigger than this sum and that sum is 

bigger than mu of A. So, 1 and 2 imply that mu star of A plus epsilon is bigger than mu 

of A and epsilon is arbitrary. So, let epsilon go to 0 and that implies that mu star of A is 

bigger than or equal to mu of A. So, that proves the other way round inequality in the 

case when mu star of… 
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(Refer Slide Time: 47:15) 

 

So, once again mu star of A is less than or equal to mu of A because A is one of the 

members which is covering it and mu of A is an element. So, mu star A is an infimum 

and that is less than or equal to… that is obvious property. To show that the case, when it 

is finite, we will look at the definition once again, (Refer Slide Time: 47:42) given 

epsilon is bigger than 0, there is a covering so that this holds infimum plus epsilon is 

bigger than one of the elements over which you are taking the covering. Now, using the 

fact that mu is countably sub additive, this is bigger than or equal to mu of A. Hence that 

proves the required property.  
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(Refer Slide Time: 48:01) 

 

So, what we have shown is that mu star is indeed an extension of mu of A. So, let us go 

back and look at what we have done. 

(Refer Slide Time: 48:17) 

 

We started with a measure mu on the algebra A. Here, measure means, it is mu of empty 

set is equal to 0 and mu is countably additive. We are trying to extend it and so, we try to 

find out the size of any set by looking at sizes of sets in A. So, take any set E and cover it 

by elements in the algebra A. Look at the sizes of mu and they are called as mu of Ai so 

that the summation gives an approximate size of the set E. Look at the smallest possible 
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of this numbers and it is called as the infimum. mu star of E, the induced outer measure 

is defined as the infimum over all this summations and this summations arise from 

coverings of E and so this is called an outer measure. 

(Refer Slide Time: 49:07) 

 

We showed it is well defined and we showed it is it has the obvious property, namely, 

mu of empty set is equal to 0 and mu star of A is bigger than or equal to 0. It is monotone 

and that means mu star of A is less than or equal to mu of B; Mu star is countably sub 

additive. 
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(Refer Slide Time: 49:28) 

 

 Finally, it is an extension. So, let me point it out that we have taken mu star of A as the 

infimum over those summations. We have taken the coverings which are countable in 

numbers. One can ask the question, Can’t we take only finite coverings instead of 

countable coverings of it? So, let us give an example to show that that is not possible to 

do that; the finite covering will not suffice. 

(Refer Slide Time: 49:59) 

 

So, let us look at the set E - the case is the real line. We will look at the set E, which is 

rational and intersection with 0 to 1. So, we are looking at all the rationals in the set in 
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the interval 0 to 1. Clearly, lambda star of E; we expect it to be equal to 0. Why we 

expect? Size of this… because it is a countable set and the length of each singleton is 

equal to 0. So, we expect the length of each, when added together also should remain 

small and lambda star of E is equal to 0; this is when lambda star is defined by taking 

countable coverings. Now, let us take a finite covering of E by intervals. So, E is covered 

by finite number of intervals union Ei. 

(Refer Slide Time: 50:58) 

 

 We claim that in that case, this number - the approximate size of E, will always will be 

bigger than or equal to 1 because of the following reason: 
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(Refer Slide Time: 51:08) 

 

What is E? E is rationals inside 0, 1 and suppose E is covered by union Ij‘s j equal to 1 to 

n. If possible, let sigma lambda of Ij j equal to 1 to n be less than or equal to 1. so, these 

are finite collection. So, here is 0 and here is 1 and Ij‘s are intervals. Of course, intervals 

in 0, 1 which are Ij‘s of 0,1 covering set E and is rationals in 0, 1. So, now so let us say 

that Ij for the sake of just definition, it is aj bj and does not matter whether it is open or 

closed. You can just assume it to be open and it does not matter much, actually. Then we 

have got these numbers between aj’s and bj’s. so, look at all the left end points and look 

at the smallest of them  and let us say the smallest is here is a. 

So, what is a? a is the smallest of the number a1 a2 an. Look at the largest of bj’s and call 

that as b. Then, this a, b - may be closed, does not matter, is equal to union of Ij‘s or at 

least it will cover the union of Ij‘s j equal to 1 to n and they cover E. Now, that covers E 

and it this is less than or equal to… This is the smallest and that is the largest one, which 

is covering(Refer Slide Time: 53:06). 

Now, b minus a is less than or equal to summation length of Ij

 

‘s j equal to 1 to n. If that 

is less than or equal to 1, that means b minus a is strictly less than 1; that means, it has to 

be like this (Refer Slide Time: 53:31) but there is a rational here between 0 and 1, which 

belongs to E and E is inside a b. So, that is not possible and that will be a contradiction. 

So, this situation is not possible. (Refer Slide Time: 53:47)  
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(Refer Slide Time: 53:52) 

 

That means, whenever these are covering, we have to have lambda Ii is bigger than or 

equal to 1, but that means all approximate sizes is bigger than 1. That will imply lambda 

star of E is bigger than or equal to 1. It is not possible because we just now said lambda 

star of E should be equal to 0. So, in the definition of the outer measure, we cannot limit 

ourselves to only finite coverings. We have to allow all countable coverings also. 

Today, we have tried to go beyond algebra. So, we started with a semi-algebra and a 

measure on it. We extended it to a measure on the algebra generated by it as a first step. 

As a next step, we started with a measure on an algebra. We showed that by an example, 

on the real line by Ulam’s theorem that you cannot extend it to all subsets of real line. 

Let us try to go as far as possible. So, we defined - given a measure mu on an algebra, we 

defined the notion of an outer measure for any subset a of that set X. We showed this 

outer measure has some nice properties. It extends the given measure and it is monotone, 

which is countably sub additive. So, in the next lecture, we will see how to get from it, 

an actual extension, which is a measure.  

Thank you. 

 


