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Uniqueness Problem for Measure 

Welcome to today's lecture on measure and integration. This is the eighth lecture on 

measure and integration. Today, we will be looking at a problem called the uniqueness of 

measures on algebras and sigma algebras. For this, we will need to define some 

terminology. Let us look at the uniqueness problem for the topic for today's lecture. 

(Refer Slide Time: 00:44) 

 

The problem is as follows. We are given C – an algebra of subsets of a set X; S of C is 

the sigma algebra generated by C. So, C is an algebra and S of C is the sigma algebra 

generated by C. We have got two measures mu1 and mu2 defined on the sigma algebra 

generated by C such that mu1 of A is equal to mu2 of A for every A belonging to C. For 

all elements in C, mu1 and mu2

The question is can we conclude that mu

 agree. 

1 of E is equal to mu2 of E for every element in 

the sigma algebra generated by C? This is a general uniqueness problem which plays a 

role later on when we extend measures to general settings. To answer this question, let us 



make some definitions. First of all, this is not true in general for all measures; we have to 

put some conditions on the measures. 

(Refer Slide Time: 01:56) 

 

Let us look at what is called a totally finite measure. A measure C is called totally finite 

if mu of every subset A is finite in that domain of mu. C is a collection of subsets and mu 

is a set function. We say mu is totally finite or sometimes we also say it is finite if mu of 

A is less than plus infinity for all A belonging to C. Note that in case C is an algebra and 

mu is finitely additive, then mu is finite if and only if mu of X is finite. 

(Refer Slide Time: 02:39) 

 



Let us assume C is an algebra and mu from C to 0 to infinity is finitely additive. Suppose 

mu of the whole space is finite. Note that the whole space X belongs to C because C is 

an algebra. We had seen earlier that finite additivity of mu implies mu is monotone. We 

had seen this property earlier; so, we will not go into the details of this again. Since mu is 

monotone, for every A contained in X, mu of A will be less than or equal to mu of X 

which is finite; this implies mu of A is finite for every A subset of X. 

The converse is obviously true; converse is true because X belongs to C and so mu of X 

is finite. Whenever we are dealing with finitely additive set functions saying mu is totally 

finite, it is enough to say that mu of X is finite and as a consequence mu of every subset 

will be finite. This is an easy consequence of saying for a finitely additive set function on 

an algebra, mu of the whole space finite is the same as saying mu of every subset A of X, 

A in the algebra of course, is finite. 

(Refer Slide Time: 04:37) 

 

Let us look at the property. Let us take a set function mu and we say that it is sigma 

finite. We defined what is totally finite and now we define what is called sigma finite. 

mu is said to be sigma finite if we can write the whole space as a union of sets Xn n 

equal to 1 to infinity such that these sets are pairwise disjoint (we want these sets to be 

pairwise disjoint) and mu of each Xn

Each X

 to be finite.  

n should be an element in the domain of mu in the class C and mu of Xn should 

be finite. We are essentially saying that for totally finite, mu of the whole space is finite. 



sigma finite means what? X can be cut up into pieces X1, X2, Xn and so on and mu of 

each Xn

(Refer Slide Time: 05:37) 

 is finite; this is what is called sigma finite set functions. 

 

Let us look at some examples of set functions. The length function lambda on the class 

of all intervals is sigma finite. It is easy to see why a length function is sigma finite. 

(Refer Slide Time: 05:55) 

 

Here is the length function lambda on the class of all intervals taking values in 0 to 

infinity. The whole space, the real line, is of course the interval minus infinity to plus 

infinity. The length of R we know is not finite; it is equal to plus infinity but we can 



write R as a disjoint union of the intervals n to n plus 1, for example, n belonging to 

integers. The real line is cut up. Here is the real line; here is 0, 1; open 1, closed 2, open 

2, closed 3 and so on; on this side, minus 1 and this is minus 2 and so on. 

We have cut up the real line; we have divided the real line into many countable disjoint 

pieces; each one is an interval and length of n to n plus 1 for every n is equal to 1 which 

is less than, of course, infinity for every n. The whole real line is written as a countable 

disjoint union of intervals, each one having finite length; so, lambda on the class of 

intervals is sigma finite; of course, it is not finite because the length of the whole space is 

equal to plus infinity. This is an example of a set function which is sigma finite (Refer 

Slide Time: 07:35). We will give another example of set function which is totally finite. 

(Refer Slide Time: 07: 52) 

 

For that, let us look at the length function restricted to any finite interval. 



(Refer Slide Time: 07:55) 

 

Let us look at, say for example, the interval a to b and let us look at all subintervals. Let 

us look at I tilde a, b to be all subintervals of a, b and define, of course, the length 

function as before. This will be a function from 0 to b minus a; length of I is equal to the 

usual definition of length of I for I contained in a, b. We know that length function is 

finitely additive, it is countably additive and so on; on these intervals also, it is countably 

additive. We know lambda of the interval a to b is equal to b minus a which is finite. One 

says lambda restricted to subintervals in a, b is finite or totally finite for every a and b; 

this is an example of a measure which is totally finite. Let us look at another example of 

a set function which is not… 



(Refer Slide Time: 09:36) 

 

Let X be any set and for any subset A of X, let us define mu of A to be equal to plus 

infinity if A is nonempty and mu of 0 to be equal to 0. Then, obviously, this is a measure 

on P of X. This is a simple consequential property that one can easily check because mu 

of empty set is 0 is given and if A is any set which is a countable disjoint union or not, 

mu of the union will be equal to again plus infinity which is equal to sigma mu of Ai

(Refer Slide Time: 10:26) 

s; at 

least one of them has to be nonempty. I hope it is clear that this mu is countably additive; 

this is a measure on P of X. 

 



Let us suppose that A is equal to union of Ais, i equal to 1 to infinity. If A is equal to 

empty set, then Ai is equal to empty set for every i, implying mu of a which is 0 is the 

same as sigma mu of Ais, i equal to 1 to infinity. The second possibility is if A is not 

empty and A is equal to union. That implies there exists at least one i such that Ai is not 

empty. Then, let us say that such that i says that so let us say that is Ai0; there is at least 

one i; let us say that is i0

Then, union A

 (Refer Slide Time: 11:22).  

i0 is not empty; A is not empty anyway; this is not required (Refer Slide 

Time: 11:35). Then, mu of A is equal to plus infinity is equal to summation mu of Ais 

because at least one term here is not empty (Refer Slide Time: 11:47). So, that is equal to 

plus infinity; mu of Ai0

This is a measure on the class of all subsets (Refer Slide Time: 12:04). So, mu of A is 

plus infinity if A is not empty and mu of empty set is equal to 0 is a measure and this 

obviously is not sigma finite because there are no subsets anyway whose mu is finite. 

This is an example of a non-sigma finite measure. 

 is equal to plus infinity; this is also plus infinity; they are the 

same.  

(Refer Slide Time: 12:34) 

 

The theorem we want to prove today is the following. Let us take C, a semi-algebra of 

subsets of a set X and S of C to be the sigma algebra generated by C. Let mu1 and mu2 

be two finitely additive set functions on S of C such that mu1 of E is equal to mu2 of E 

for all E belonging to C. Then, we want to show that mu1 of A is equal to mu2 of A for 



all A belonging to first A of C, where A of C is the sigma algebra generated by C. We 

are saying as a first step we are going to prove that if two measures mu1 and mu2

(Refer Slide Time: 13:36) 

 defined 

on a semi-algebra agree, then they also agree on the algebra generated by that semi-

algebra. This is what we want to prove. Let us see the proof of that. 

 

C is a semi-algebra; A of C is the algebra generated by C; we are given mu1 of E is equal 

to mu2 of E for every E belonging to C. We have to show mu1 of A is equal to mu2

We showed that if A is an element of the algebra generated by a semi-algebra, then this 

A must look like a finite disjoint union of elements C

 of A 

for every A belonging to algebra generated by C. How do you prove it? Let us start. Let 

us take a set A which belongs to A of C. Recall we had shown characterizations of 

elements of the algebra generated by a semi-algebra. 

i, i belonging to n where Cis belong 

to the semi-algebra C. Every element A in the algebra generated by a semi-algebra, we 

had shown, must have a representation like this, but then mu1 of A is equal to mu1 of this 

finite union. We know mu1 is finitely additive. That implies this must be equal to sigma i 

equal to 1 to n mu1 of Ci, but each mu1 is equal to mu2 on each element of C and Cis are 

elements of C; that implies that this must be equal to 1 to n mu2 of Cis. Again by using 

mu2 is finitely additive, I can write this as mu of A because A is a finite disjoint union of 

elements of this; so mu1 of A is equal to mu2 of A whenever A belongs to A of C (Refer 

Slide Time: 16:01).  



This proves the theorem that whenever two finitely additive set functions mu1 and mu2

(Refer Slide Time: 16:24) 

 

agree on a semi-algebra, then they also agree on the algebra generated by it(Refer Slide 

Time: 16:18). Let us go to the next step of this uniqueness problem.  

 

That is saying that let C be a semi-algebra of subsets of a set X once again and S of C be 

the sigma algebra generated by C. This we have already proved (Refer Slide Time: 

16:39). 

(Refer Slide Time: 16:45) 

 



Let mu1 and mu2 be sigma finite measures on S of C such that mu1 of E is equal to mu2 

of… this is a misprint mu1 of E should be equal to mu2 of E for all E in C. Then, mu1 of 

E is equal to mu2

(Refer Slide Time: 17:18) 

 of A for all A belonging to S of C where S of C is the sigma algebra 

generated by it. Let me state it; we will divide the proof into steps of course. 

 

Let us look at the statement of the theorem once again.  

(Refer Slide Time: 17:22) 

 

We are saying that let mu1 and mu2 be two measures which are sigma finite defined on 

the sigma algebra generated by a semi-algebra C. It measures C, the semi-algebra S of C, 



and this S of C is equal to the sigma algebra generated by C. Given mu1 of A is equal to 

mu2 of A for every A belonging to the semi-algebra. We have to show mu1 of A is equal 

to mu2

Let us look at the first step (Refer Slide Time: 18:35). We may assume that C is an 

algebra. Here, we are given that C is a semi-algebra (Refer Slide Time: 18:38). Step 1 

says we may assume that C is an algebra. That is because of the fact that we have just 

now shown that if mu

 of A for every A in the sigma algebra generated by C; this is what we want to 

show. 

1 and mu2 agree on the on a semi-algebra, then they also agree on 

the algebra generated by it. By the given hypothesis, mu1 of A is equal to mu2

We already have mu

 of A for 

every A belonging to the algebra generated by C. 

1 and mu2 agreeing on the algebra generated by A of C. This implies 

mu1 of A is equal to mu2

mu

 of A on S of C, the sigma algebra generated by C, but note this 

is the same as the sigma algebra generated by A of C; that also we have shown. Given a 

semi-algebra, you can directly generate the sigma algebra or you can generate the 

algebra first and then generate the sigma algebra; both are same. Just now we showed 

that whenever two measures agree on a semi-algebra, they agree on the algebra 

generated by it.  

1 and mu2 agree on the semi-algebra; therefore, they agree on the algebra generated 

by it. We want to show that they agree on the sigma algebra generated by it which is 

nothing but S of C. That proves the first step. As a first step in our proof, we are saying 

that the given class C on which mu1 and mu2 are defined is actually an algebra (Refer 

Slide Time: 20:27). That is the first simple equation in the proof – without loss of 

generality, we may assume that C is an algebra. 



(Refer Slide Time: 20:39) 

 

The next step says that we may assume that both mu1 and mu2 are totally finite. We are 

given mu1 and mu2

(Refer Slide Time: 20:56) 

 are sigma finite. 

 

The next step is that we may assume that mu1 and mu2 are totally finite. What is the 

meaning of saying we may assume? This is the same as saying if the statement mu1 of A 

equal to mu2 of A for every A belonging to S of C is true when mu1 and mu2 are totally 

finite, then it will also be true when mu1 and mu2 are sigma finite. That is the meaning of 



saying that we may assume that mu1 and mu2

Let us take a set A contained in…. What we are given is mu

 are totally finite. Let us see why that is the 

case. 

1 and mu2 are sigma finite; 

mu1 and mu2 are sigma finite; mu1 is sigma finite and so I can write X as union of Xis, i 

equal to 1 to infinity where Xis belong to C and mu1 of each Xi is finite. Similarly, mu2 

is sigma finite; so, you can write X as union some j equal to 1 to infinity Yj, where Yjs 

are subsets in C and mu2 of each Yj

(Refer Slide Time: 23:08) 

 is finite. 

 

From both of these statements, I can write X as so this implies we can write X as union 

over i, 1 to infinity of Xis but that I can decompose into union of Yjs Xi intersection Yj; 

I can write that. I can write this as a decomposition of X into subsets Xi intersection Yj. 

Now, what we have achieved is the following: mu1 of each Xi was finite and mu2 of 

each Yj have finite. This implies that mu1 of Xi intersection Yj is finite and mu2 of Xi 

intersection Yj is also finite; both mu1 and mu2

In the picture, you can think of this as X; you divide; these are sets X

 are finite on this ((.)). 

1, X2, Xi and so on. 

You also have sets Yjs; they are decompositions like this (Refer Slide Time: 24:27). This 

piece is Yj and this piece here is Xi intersection Yj. The whole space is cut up into 

pieces; this is what this statement means where each one of them is finite (Refer Slide 

Time: 24:51). 



(Refer Slide Time: 24:55) 

 

Here is an observation; note that mu1 and mu2 restricted to Xi intersection Yj are totally 

finite. What is the meaning of this statement that they are restricted? That means if you 

look at the subsets, for every A contained in Xi intersection Yj, A belonging to C, mu of 

A is finite and mu2

For any set A contained in X, mu

 of A is finite. For totally finite measures, we have already assumed 

that this statement is true and we are trying to show it for our sigma finite. 

1 of A can be written as summation over i summation 

over j mu1 of A intersection Xi intersection Yj. That is because A is equal to union over i 

union over j A intersection Xi intersection Yj. This is a countable disjoint union (Refer 

Slide Time: 26:26). mu1 is a measure and so this must be true. Note that this A 

intersection is a set in the set Xi intersection Yj where mu1

That means what? By the assumption that statement is true for finite measures we will 

conclude that this is same as mu

 is finite and then we know 

that there the statement is true. Here, A is contained in X, of course A belonging to S of 

C; so, the statement is true.  

2 of A intersection Xi intersection Yj and once again that 

is equal to mu2 of A. The basic idea is for any set, we can bring it to the finite pieces 

(there, we know it is true) and go back to the original piece. This is the proof of the 

second step that we may assume without loss of generality – our measures mu1 and mu2 

are both finite (Refer Slide Time: 27:32). 



We have made two simplifications in our proof: the first one being we may assume that 

C is an algebra and the second one that mu1 and mu2 are totally finite. What do we want 

to prove now? We are only left with the case to prove that if C is an algebra, mu1 and 

mu2

(Refer Slide Time: 28:16) 

 are totally finite defined on the algebra C and if they agree on C, then they will 

agree on the sigma algebra generated by C. That is the next step we want to show.  

 

To prove the final step, let us write M to be the class of all those elements of S of C 

where mu1 and mu2 agree. What is the aim to prove? Our aim is to prove that this 

collection M is nothing but S of C. We are picking up subsets of S of C; M is a subclass 

of S of C; we want to prove that this is equal to S of C and that is proved as follows. 

First, we will observe then M is a monotone class; we will prove that. Once we have 

proved that M is a monotone class, we will also observe that we are given that mu1 and 

mu2

C is an algebra and C is contained in M. M is a monotone class; that will mean what? 

The monotone class generated by C must be inside M, but C is an algebra and the 

monotone class generated by an algebra is the sigma algebra generated by it. That also 

we have proved; that we will prove as step 4 – M is equal to S of C. 

 are equal on C; so, C is a subclass of M.  



(Refer Slide Time: 29:40) 

 

Let us prove step 3 and then conclude from it step 4. Step 3 we want to prove. We are 

given that mu1 and mu2 are totally finite; we are in this case; C is an algebra; mu1 of A is 

equal to mu2 of A for every A belonging to the algebra C. We have to show that mu1 of 

A is equal to mu2

The proof: define M to be the class of all subsets belonging to S of C for which this 

property is true (Refer Slide Time: 30:21). That means mu

 of A for every A belonging to the sigma algebra generated by C; that is 

the question. 

1 of E is equal to mu2

Let E

 of E. 

The claim is that this M is a monotone class. What is a monotone class? Recall that a 

monotone class is a collection of subsets of a set X which is closed under increasing 

unions and decreasing intersections. These two properties have to be checked; let us 

check them.  

n be a sequence in M such that En is increasing; En is inside En plus 1 for every n. we 

have to show that union of Ens belongs to M. Let us note that En is an increasing 

sequence; En increases to E which is union of Ens. Ens belong to M – keep that in mind. 

That is the set E (Refer Slide Time: 32:13). We want to show that E belongs to M; that 

means mu1of E is equal to mu2 of E. 



(Refer Slide Time: 32:24) 

 

What is mu of E? How do we compute it? Let us observe that mu1 of E is nothing but 

limit of mu1 of Ens. Why is that? That is because mu1 is a measure; it is countable 

additive; we had proved that countable additivity of the set function implies that 

whenever a sequence En increases to a set E, then mu of E must be limit of mu1 of En

Go back and refer that was because of mu being countably additive (Refer Slide Time: 

33:10); that is the property being used here – equivalent form of it. Now, each E

s; 

that was the characterization property for countable additivity. 

n 

belongs to M; that implies that even mu1 of ((.)) is equal to mu2 of En. This is equal to 

limit n going to infinity mu2 of En; that is, we are using mu1 equal to mu2 on mu1 mu2 

equal to mu1 equal to mu2 because sorry; this is because En

Once again, mu

 belongs to M (Refer Slide 

Time: 33:46). 

2 is countably additive; there, mu1 ((.)). That implies that this is mu2 of E 

using the fact that mu2 is countably additive. We have used a lot of things which we have 

proved earlier: mu1 is a measure, En is increasing to E; so by countable additivity, mu1 

of E must be equal to limit n going to infinity mu1 of En

Now, each E

 (Refer Slide Time: 34:19). 

n belongs to M; En is a sequence in M (Refer Slide Time: 34:27). That 

means mu1 of En is equal to mu2 of En; this is equal to this (Refer Slide Time: 34:34). 

This is the second (( )). Once again, mu2 is countably additive and En increases to E; so 

by countable additivity, this limit must be equal to mu2 of E (Refer Slide Time: 34:47). It 



says mu1 of E is equal to mu2 of E. That implies that E belongs to M whenever En

The corresponding thing we have to prove when it is decreasing and that is where we are 

going to use the fact that mu

 is a 

sequence which is increasing to M; this is for increasing. 

1 and mu2 are totally finite. For the second case, let Ens 

belong to M, En includes En plus 1 for every n decreasing, and let E be equal to 

intersections of Ens, n equal to 1 to infinity. We want to show that E also belongs to M. 

For that, once again, mu1 of E is equal to limit n going to infinity mu1 of En because mu1 

is totally finite, mu1 of X is finite and mu1 is countably additive. That, as observed 

earlier, is same as mu2 of En because each En belongs to M and that is equal to mu2 of E; 

once again, mu2 is finite and En

(Refer Slide Time: 36:31) 

 is decreasing to E; that proves this also; this proves that 

M is a monotone class (Refer Slide Time: 36:28). 

 

The class M which was equal to all subsets E belonging to S of C such that mu1 of E is 

equal to mu2 of E is a monotone class. We are given that mu1 of A is equal to mu2

M is a monotone class and C is inside it; that implies that the monotone class generated 

by C must be inside M. Recall: what is monotone class generated by a collection of 

subsets of C? It is the smallest monotone class of subsets of X which include C; being 

 of A 

for every A belonging to C. What does that mean? An equivalent way of stating that is 

saying that the collection C is inside the collection M. That is what it means by the very 

definition. 



the smallest, it must be inside it but note that C algebra implies M of C is equal to S of C. 

This is an important theorem which we had proved: if you take an algebra and generate a 

monotone class out of it, that is the same as generating the sigma algebra out of it.  

This is the same as saying that S of C is contained in M but M is a collection of subsets 

of S of C; that is inside S of C; that is same as saying that M is equal to S of C (the sigma 

algebra generated by C). That means what? For all elements in S of C, mu1 is equal to 

mu2 of E. That proves the uniqueness theorem. We have finally proved in these four 

steps the theorem that if mu1 and mu2 are two measures defined on a semi-algebra of 

subsets of a set X and mu1 and mu2

(Refer Slide Time: 39:17) 

 are both sigma finite and they agree on the semi-

algebra, then they also agree on the sigma algebra generated by C. This is an important 

theorem which we are going to use quite often. With this, we come to an end of a part of 

our course. This is probably the right stage to revise what all we have done till now. Let 

us revise what we have done till now. 

 

We started with looking at collections of subsets of a set X. We defined what is a semi-

algebra. What was a semi-algebra? A semi-algebra was a collection of subsets of a set X 

with these properties: the whole space belongs to it, the empty set belongs to it, it is 

closed under intersections and the complement of a set is not necessarily inside it but can 

be represented. 



(Refer Slide Time: 39:53) 

 

A semi-algebra C meant that empty set and the whole space belong to it – one property; 

the second one is A and B belonging to C should imply A intersection B belong to C; the 

third property is that A belonging to C implies A complement can be written as a finite 

disjoint union of elements of C for some Ci

Then, we defined what is called an algebra. A collection C is called an algebra with the 

first property as it is – empty set and the whole space belong to it; A and B belonging to 

C should imply it is closed under intersections and that also belongs to C; now we have 

something stronger; instead of just saying that A belongs to C, its complement is 

representable, actually we want that this complement also belongs to C; this is something 

stronger; we said this is a stronger property. 

s belonging to C; that is a semi-algebra.  

An algebra implies semi-algebra and the converse need not be true – that we have said. 

Then, we define what is called as sigma algebra. A collection C is a sigma algebra if, of 

course, it is an algebra first of all; it is phi and X belong to C; it is closed under 

intersection; so, A and B belong to C if A and B belong to C but this is not enough; 

actually, this should be true for any countable collection. Let us write whenever Ais 

belong to C, that should imply that intersection Ais belongs to C and because it is going 

to be closed under complements, this is property (i), this is the second and the third 

property is that A belongs to C should imply A complement belongs to C. 



That automatically implies that C is also closed under… So, this property of countable 

intersections can be equivalently stated as, because of the complements, Ais belong to C 

imply union Ai

(Refer Slide Time: 42:44) 

s also belong to C. A sigma algebra is a collection which is closed under 

countable unions and complements and, of course, the empty set in the whole space 

belongs to it. Then we define what is called a monotone class (Refer Slide Time: 42:40). 

 

What was a monotone class? M was called a monotone class whenever a sequence En 

belongs to M, Ens are increasing, E is equal to union Ens should imply that E also 

belongs to M; this is one property. The second property we want that whenever Ens 

belong to M, Ens are decreasing and E is equal to intersection of En

A monotone class is the collection of subsets of a set X with the property that it is closed 

under increasing unions and decreasing intersections. Of course, a sigma algebra implies 

a monotone class but the converse is not always true. These were the basic concepts of 

properties of collections of subsets of a set X (Refer Slide Time: 44:01) that we looked 

at.  

s should imply that E 

also belongs to M. 



(Refer Slide Time: 44:12) 

 

Then, we looked at what is called the algebra generated by a collection of subsets or the 

sigma algebra generated by a collection of subsets or the monotone class generated by a 

collection of subsets of a set X. In all these cases, we are basically given a collection C. 

(Refer Slide Time: 44:33) 

 

Let us just recall what was the meaning of saying generation. C is any collection of 

subsets of a set X. The algebra generated by C is the smallest one; it was the intersection 

of all the algebras which include C and we showed that such a thing exists. Similarly, the 

sigma algebra generated by C we said is nothing but look at all sigma algebras of subsets 



of X which include C and take their intersection; that is a sigma algebra; that is called the 

sigma algebra. Another way of saying is the algebra generated by C is the smallest 

algebra of subsets of a set X which include C. 

Similarly, S of C is the smallest sigma algebra of subsets of C which includes C. 

Similarly, we have monotone class generated by C. It is the smallest monotone class of 

subsets of X which include C. We showed by these properties that such an object always 

exists. Then, we proved a very important theorem namely the monotone class generated 

by C is equal to the sigma algebra generated by C if C is an algebra; this was an 

important theorem that we had proved. These concepts were basically about collection of 

subsets of a set X.  

Then, we looked at functions defined on such a collection of subsets of ((.)) set X and we 

called them as set functions. Set functions are functions defined on a collection of 

subsets of a set X.  

(Refer Slide Time: 46:39) 

 

The important class of set functions was the length function. We showed that the length 

function had important properties: the length function which is defined on the class of all 

intervals in the real line was shown to be a countably additive set function which was 

also invariant under translations; that was an important property. Finally, we had proved 

some equivalent conditions for countable additivity and these conditions are very useful. 



(Refer Slide Time: 47:28) 

 

Let us just recall these equivalent conditions. We have used one of them today also. For 

example, if mu is defined on an algebra (this is an algebra) and it is finitely additive, then 

we said that mu is countably additive if and only if mu is countably subadditive. Let us 

write plus mu is finitely additive. Let us remove this condition (Refer Slide Time: 

47:58). Let us write mu to be an algebra and mu of empty set equal to 0. mu is a set 

function defined on an algebra and mu of empty set is 0. Then, we proved that saying 

that mu is countably additive is equivalent to saying that mu is finitely additive and 

countably subadditive. This is quite useful in proving countable additivity of set 

functions. This was (1) (Refer Slide Time: 48:27). 

Second: we proved that mu is finitely additive; we assumed that. Then, mu is countably 

additive if and only if whenever Ens decrease of course under the condition A is an 

algebra to E; this should imply mu of Ens is equal to the decrease so that is so let us write 

decrease to E then limit n going to infinity mu of En

mu of X is finite and E

 is equal to mu of E. We have to put 

an extra condition: mu of X is finite.  

ns increase to E; that implies that limit of Ens is equal to mu of E. 

This condition is equivalent to saying mu is countably additive when we have this (Refer 

Slide Time: 49:24). If you do not put this condition, then this may not be true, but then 

one can equivalently prove another thing: if Ens increase to E, then that should imply mu 



of E is equal to limit n going to infinity mu of En

(Refer Slide Time: 49:54) 

s. This was the property of saying that 

((.)) something countably additive (Refer Slide Time: 49:47). 

 

Finally today, we proved the uniqueness theorem saying that if mu1 and mu2 are two 

finite countably additive set functions defined on a semi-algebra (this is a semi-algebra, 

mu1 and mu2 are sigma finite measures and mu1 of A is equal to mu2 of A for every A in 

the semi-algebra), then this implies mu1 of A is equal to mu2 of A for every A belonging 

to the sigma algebra generated by C. mu1 and mu2

C is a semi-algebra. Let me state it once again; C is a semi-algebra; mu

 should already be defined; I am sorry; 

we should say they are already defined in S of C (Refer Slide Time: 50:59). 

1 and mu2 are 

defined on the sigma algebra generated by C; both mu1 and mu2 are sigma finite and 

mu1 and mu2 agree on the semi-algebra; then they agree on the sigma algebra also; they 

agree on the whole domain. If they agree on the part of the domain which is the semi-

algebra, then they agree on the whole of the sigma algebra also. That is the uniqueness 

result and that we proved under the condition that mu1 and mu2

We stop here today. In the next lecture, we will start a new topic called extension theory. 

We will like to extend a set function defined on a class to a bigger class; for example, on 

the real line, we have the notion of length defined on the collection of all intervals; we 

 are sigma finite 

measures. We will see how that is used in extension theory in the few lectures when we 

come to that. 



would like to define the notion of length for any set; that is the motivating thing for 

extension theory. We will use that and prove the theorems in the next lectures. Thank 

you.  


