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Welcome to lecture 7 on measure and integration. 

(Refer Slide Time: 00:30) 

 

If you recall, in the previous lecture we had started looking at countably additive set 

functions on intervals and we proved some properties of such countably additive set 

functions. We will recall that theorem that we were proving and then continue the proof. 

If time permits, we will look at a characterization of countably additive set functions 

defined on algebras in the latter part of the lecture. 



(Refer Slide Time: 00:59) 

 

Let us just recall what were proving in the last lecture. We were trying to show that if mu 

is a finitely additive set function defined on the collection of all left-open right-closed 

intervals which was denoted by I tilde, if such a finitely additive set function is given 

with a property that mu of any finite interval is finite, mu of left-open right-closed 

interval a, b is finite for every a and b; then, we wanted to characterize such countably 

additive properties of such functions and relate it to a class of functions on the real line.  

The claim of the theorem is that there exists a monotonically increasing function F from 

R to R such that the value mu of the left-open right-closed interval a, b is given by F of b 

minus F of a for every a and b belonging to R. We wanted to show that given a finitely 

additive set function on the class of all left-open right-closed intervals, it must arise from 

a monotonically increasing right-continuous function F with the relation that the value 

mu of a, b is given by the difference F of b minus F of a. Here, mu was only finitely 

additive. If we assume mu is countably additive, then this function F can be selected to 

be right-continuous. 



(Refer Slide Time: 02:44) 

 

Let us just recall how we defined this function. We looked at the function F defined by F 

at a point x is defined as the measure mu of the interval 0 to x if x is bigger than 0; it is 0 

if x is equal to 0 and is minus mu of x to 0, closed at 0 if x is less than 0. This was the 

definition of the function F. We proved the property that this function F is indeed 

monotonically increasing. For that, if you recall, we use the fact that F is the measure mu 

this mu is a countably additive is a finitely additive set function. Next, if we assume that 

mu is countably additive, we wanted to show that this function F is right-continuous at 

every point x in R. 

(Refer Slide Time: 03:45) 

 



We had started looking at the proof when x is bigger than or equal to 0. We had proved 

that for any point x bigger than or equal to 0, F is right-continuous at the point x is equal 

to 0. Today, we will start with proving the remaining part of the proof – if x is less than 

0, then also F is right-continuous at x. 

(Refer Slide Time: 04:13) 

 

Let us look at the proof. We want to show F is right-continuous at a point x where x is 

less than 0. Here is the point 0 and here is x. To show right-continuity at the point x, let 

xn belong to R. Let us a take xn – a sequence in R such that xn decreases to x; that means 

all the xns are on the right side of the x and are converging to x. All the points xns are on 

the right side and so here it may be x1, here it may be x2

After some stage, x

 and so on (Refer Slide Time: 

05:07). 

n has to cross over the point 0 (the value 0). What we are saying is 

this: without loss of generality, assume that all the xns are bigger than 0 for every n 

because xn is going to converge to x and x is less than 0; so, at some stage it has to cross 

over. We can start analyzing the sequence from that point onwards. One writes this as 

without loss of generality the proof is not changed if we assume xn is less than 0 for 

every n. Here is the situation; here is the point x, here is the point 0 and here is the point 

x1

Here is x

 (Refer Slide Time: 05:53). 

2 and so on. Let us observe that the interval left-open right-closed at 0 can be 

written as x to x1 union x1 to 0. I can write this as from this point to x1 and from this 



point onwards this one (Refer Slide Time: 06:24). Now, this interval x to x1 I am going 

to split further into a union of intervals. My claim is that this x to x1 is the same as x1 to 

x2 union x2 to x3 union x3 to x4

The claim is that is the same as x

 and so on. 

n plus 1 comma xn left-open right-closed union n equal to 

0 to infinity union x1, 0. The interval x to x1 – this part (Refer Slide Time: 07:09) we are 

splitting it into left-open right-closed, left-open right-closed and so on; this is an equality 

because xn is decreasing to x. At any point here if I take any point in between x and x1, 

then that stage has to be crossed over by some xn; that point will belong here. So, the 

interval x to x1 is a union of the intervals left-open xn plus 1 to closed xn

(Refer Slide Time: 07:58) 

, n equal to 0 to 

infinity. 

 

Also observe that these intervals are all disjoint. These are all disjoint intervals; so, I can 

write using countable additive property mu of the set function is equal to summation n 

equal to 0 to infinity mu of xn plus 1, xn plus mu of x1 to 0. Here, we have used the fact 

that mu countably additive implies this property is true. Now, this right-hand side is a 

sequence of nonnegative real numbers, possibly extended real numbers; I can write this 

as limit k going to infinity sigma n equal to 0 to k mu of xn plus 1, xn plus mu of x1

Now, we will write everything in terms of F. By definition, mu of x to 0 is minus F of x 

is equal to limit k going to infinity summation n equal to 0 to k. This is nothing but F of 

 to 0, 

closed here at 0. 



xn minus F of xn plus 1 plus F of F of x1 to 0 so that is in fact minus F of x1

(Refer Slide Time: 09:57) 

. Now, let us x 

note what this is. This is limit k going to infinity. What is this sum? This starts with n 

equal to n equal to 0 will give x 0. That is not so let us so. There was a mistake here.  

 

I should have written as union from n equal to 1 because it is 1 to 2 and so on. That was 

the mistake here 

(Refer Slide Time: 09:57) 

 

This sum is from n equal to 1 to, n equal to 1 to, n equal to 1 to k (Refer Slide Time: 

10:12). What is this sum? n equal to 1 gives you F of x1 minus F of x2 plus F of x2 



minus F of x3 and so on plus F of xn equal to k; so that is xk minus F of xk plus 1. So, that is 

this part – this sum – and minus F of x1 (Refer Slide Time: 10:42). We observe that in 

this x2 and x2 will cancel out; what was left is this is equal to F of x1 minus F of xk plus 1 

minus F of x1

(Refer Slide Time: 11:21) 

. In this equation, this cancels with this; so, minus F of x. Sorry, there is a 

limit outside; so, limit of this k going to infinity. 

 

This gives us that F of x is equal to limit k going to infinity of F of xk plus 1. That proves 

the fact that F is right-continuous at x in the case when x was less than 0. Hence, F is 

right-continuous for every x. This proves the theorem that if mu on the class of all left-

open right-closed intervals is countably additive with the property that mu of a, b is finite 

for every a, b in R, then this implies there exists a function F which is monotonically 

increasing and right-continuous such that mu of a, b is equal to F of b minus F of a. What 

we have shown is that to every countably additive set function mu on left-open right-

closed intervals, you can associate a monotonically increasing right-continuous function. 

This is proved (Refer Slide Time: 13:06). 



(Refer Slide Time: 13:11) 

 

This completes the proof of the fact that to every countably additive set function on the 

class of intervals, we can associate a monotonically increasing right-continuous function 

with this property; in fact, the converse of this statement also holds. What will be the 

converse of such a statement? The converse of such a statement would be that if you are 

given a monotonically increasing right-continuous function F, then we can define a set 

function mu on left-open right-closed intervals in such a way that this relation is 

satisfied. That will prove that the only way we can construct countably additive set 

functions on the class of intervals is via monotonically increasing right-continuous 

functions. 



(Refer Slide Time: 14:18) 

 

The converse part of the theorem says the following. Let F be a monotonically increasing 

function from R to R. Define muF – a set function on the class of all left-open right-

closed intervals as follows. For any two real numbers a and b, we want to define what is 

muF of the left-open right-close intervals a, b. This is a property that has to be satisfied 

by F; that itself gives us the defining property of the set function mu. So, muF

Now, the question comes: what happens if b is equal to plus infinity or a is equal to 

minus infinity or both of them? In that case, we write this as for mu

 of the left-

open right-close interval is defined as the difference F of b minus F of a for all real 

numbers a and b. 

F

As x goes to infinity, minus x will go to minus infinity; we are defining it via limits. 

Look at the interval minus x to b – left open; that is the value of the mu of F; then, take 

the limit of that as x goes to infinity. This is a definition of mu

 of the infinite 

interval minus infinity to b. It is open on the left side and closed on the right side b; so, it 

is a left-open right-close interval on the real line. What we do is we take the definition as 

F of b minus F of minus x, x going to infinity.  

F of minus infinity to b. 

Similarly, if it is on the right side, if a to infinity, we define it as take the interval a to 

closed x; then, the value of that will be F of x minus F of a and now take the limit of that 

as x goes to infinity. 



The infinite interval unbounded on the right side, left-open right-closed, a to infinity is 

defined as limit x going to infinity F of x minus F of a. If it is the whole real line, then 

we define muF

Note that this is a generalization of the length function. If F is the identity function 

namely F of x is equal to x, that is a monotonically increasing function, then this is 

nothing but b minus a; so mu of a, b is nothing but b minus a. This mu F is nothing but 

the length function when F is a monotonically increasing function. One can write down a 

proof of this on the lines of when we proved that the length function is countably 

additive.  

 of the whole real line to be limit x going to infinity of F of x minus F of 

minus x. Look at the interval minus x to x and let both sides go to infinity. This is the 

way we define mu of F.  

On the same lines, one can write down the proof of the fact that this set function muF is 

also countably additive. One can wonder where one will be using the fact that F is right-

continuous. Where we will be using the right continuity of this F is to prove that it is 

monotonically increasing – to prove that muF is countably additive. If this F is 

monotonically increasing, we can define this muF

If F is right-continuous, then one can write down a proof similar to that of the case of the 

length function. One uses the fact of right-continuity because one has to deal with the 

intervals which are left-open and right-closed. If you are keen to know a proof of this, 

you better write a proof yourself trying to see that the steps given for the proof of the 

length function is countable additive can be suitably modified to do this; we will leave it 

as an exercise. If you feel it is too tough an exercise, let us assume this and go ahead. 

 is finitely additive but to prove 

countably additive, we need F to be a right-continuous function. 



(Refer Slide Time: 19:06) 

 

muF is a finitely additive set function and using if F is right-continuous, one proves that 

muF is also countably additive. This function muF

(Refer Slide Time: 19:26) 

 is called the set function induced by 

the increasing function F. 

 

This gives us a complete characterization of nontrivial countably additive set functions. 

Why nontrivial? It is because we are looking at mu of the left-open right-closed interval 

a, b to be finite in terms of functions which are monotonically increasing and right-



continuous. In some sense, there is a correspondence between measures on the class of 

all intervals and monotonically increasing right-continuous functions.  

In case that countably additive set function mu has the property that mu of the whole real 

line is finite, then one can select this monotonically increasing function to be mu of 

minus infinity to x because than this is defined; we do not have to restrict the fact that 

mu of a, b is finite; that will be true anyway because this is finite. A more canonical 

choice for the monotonically increasing right-continuous function is mu of minus infinity 

to x when mu of the whole space R is finite.  

In that case, this function F is called the distribution function on R. This plays a role in 

the theory of probability where monotonically increasing right-continuous functions are 

studied via what are called probability distributions. We will not go into that; we will just 

make a note of it in case we have a finite condition that mu of R is finite – we will take F 

of x to be this function (Refer Slide Time: 21:15). We have characterized all countably 

additive set functions on the class of all intervals.  

(Refer Slide Time: 21:33) 

 

What we shall do next is the following: we will study what are called set functions on a 

general class of sets called algebras Let us start with looking at A – an algebra of subsets 

of a set X – and mu, a set function defined on this algebra taking nonnegative real values 

(taking values 0 to infinity). We want to show that the following holds: if mu is finitely 

additive and mu of the set B is finite for a set B in the algebra A, then mu of the 



difference B minus A is equal to mu of B minus mu of A whenever A is in the algebra 

and A is a subset of B. What we are saying is the following. 

(Refer Slide Time: 22:27) 

 

Let us take sets A and B belonging to the algebra A. We are given, of course, that A is a 

subset of B and mu of B is finite. Here is the set B and A is a part of it; this is B; that is 

A; this part is A (Refer Slide Time: 22:52). We can write B as A union B minus A; this is 

the part B minus A. Note that A and B minus A both are disjoint sets; B is written as a 

finite union – in fact, union of the two sets A and B minus A and they are pairwise 

disjoint.  

mu finitely additive implies that mu of B is equal to mu of A plus mu of B minus A. 

Now, let us note that all these are real numbers; mu of B is a real number because it is 

finite; mu of A is a real number because A is a subset of B and mu of A will be less than 

or equal to mu of B; that is finite. This is an equation in real numbers anyway; that is not 

really important here but note that all are nonnegative quantities.  

That implies that mu of B is bigger than or equal to a mu of A; that is one thing that we 

observe because this is nonnegative. This also implies that mu of A is less than or equal 

to mu of B which is finite. That implies that mu of A is finite. In this equation, I can say 

all are real numbers and so I can manipulate this as an equation in real numbers. This 

equation implies that if I take it on the other side, mu of B minus mu of A is equal to mu 

of B minus A.  



That is what we wanted to prove. Note here we have used the fact mu of B is finite 

(Refer Slide Time: 24:54). Hence, mu of every subset of it is finite whenever that set is 

in the algebra. We can manipulate this as an equation only when they are real numbers; if 

they are equal to plus infinity at any one of them, then I cannot transpose them on the 

other side and write this equation. 

We have used the fact that mu is finitely additive and mu of B is finite (Refer Slide 

Time: 25:20). That implies for every subset A of B which is in the algebra, mu of A is 

also finite and mu of B minus A is equal to mu of B minus mu of A. In particular, 

suppose I take B equal to A, this gives mu of empty set is equal to 0; in particular, mu of 

empty set is 0 if mu is finitely additive and mu for at least one set B is finite. These are 

consequences of a set function being finitely additive.  

What we are trying to show is if a set function is finitely additive, what are the possible 

consequences? We showed finite additivity implies monotone; if B is finite, then I can 

interchange and write mu of B minus A to B equal to this. Finite additive plus mu of at 

least one set is finite implies mu of phi is equal to 0. 

(Refer Slide Time: 26:24) 

 

mu is monotone we have already shown. Let us look at the next property; that is a very 

important thing – characterization of countable additiveness of the set function. Suppose 

mu of phi is equal to 0, then we want to claim that mu is countably additive if and only if 

mu is both finitely additive and countably subadditive. We want to characterize the 



countable additive property of the set function defined on an algebra in terms of it being 

finitely additive and countably subadditive. 

(Refer Slide Time: 27:15) 

 

Let us prove these properties. Let us start by one way. Let us assume that mu is 

countably additive. We have to show mu is finitely additive and countably subadditive. 

Let us look at the first thing. To show it is finitely additive, what do we have to do? Let 

A be equal to a disjoint union Ai, i equal to 1 to n. Whenever the union is disjoint sets – 

pairwise disjoint, we will write it as a square union (a symbol for cup instead of writing 

it as usual) where Ai

I can also write it as union of A

s belong to the algebra A. 

i, i equal to 1 to infinity where Ai is equal to empty set if 

i is bigger than n; from n onwards let us put them as empty sets. Then, A is a countable 

union of pairwise disjoint sets. This implies by countable additive property that mu of A 

is equal to summation mu of Ais, i equal to 1 to infinity, but that is same as sigma i equal 

to 1 to n mu of Ai

On the other side, let us try to prove that mu is countably subadditive. Let us take a set A 

in the algebra and let us say this is contained in union of A

 because for i bigger than or equal to n plus 1, the sets are empty and 

mu of the empty set is given to be 0; therefore, it implies mu is finitely additive.  

is i equal to 1 to infinity. Now, 

let us observe the following: this union Ai, i equal to 1 to infinity where Ais are in the 

algebra A... (Refer Slide Time: 29:59). If you recall, we had shown that any countable 

union of sets in the algebra can be written as a countable union of disjoint sets in the 



algebra where again Bis are in the algebra but this is a disjoint union. How did we do 

that? Let us just recall that we defined B1 to be equal to A1 and in general Bn to be equal 

to An minus union Ai, i equal to 1 to n minus 1 and so on; that is how we had defined 

those sets Bi

Note that at every stage B

. 

1 is A1 in the algebra; so B1 is in the algebra. Similarly, Bn is 

An which is in the algebra; finite union Ai 1 to n minus 1 is in the algebra; the difference 

of the two sets in the algebra is again an algebra; so, each Bn is an element of the 

algebra. These are disjoint and their union because union B1 up to Bn is the same as 

union up to A1 to An

Using these two things, now let us write. A is a subset of this. This says mu of the union 

A

 and that is true for every n; so this is equal to true (Refer Slide 

Time: 31:14). 

is, i equal to 1 to infinity will be equal to summation mu of Bis, i equal to 1 to infinity 

because this union Ai is the same as union Bis. Union of Bis is a disjoint union; by 

countable additive property, mu of the union is equal to this sum (Refer Slide Time: 

32:00). Note that each Bn is a subset of An and by finite additive property – monotone 

property, this is less than mu of Ai

(Refer Slide Time: 32:31) 

, i equal to 1 to n. 

 



 

What we have shown is the following: mu of union Ai, i equal to 1 to infinity is less than 

or equal to sigma i equal to 1 to infinity mu of Ai. We just want to conclude that in fact 

mu of A is less than or equal to this quantity. Now, let us observe; A is a subset of union 

Ai. This implies that I can write A is equal to union of A intersection Ai

That means mu of A is equal to mu of union i equal to 1 to infinity A intersection A

, i equal to 1 to 

infinity; I can just intersect and then this is an equality.  

i. 

This is less than or equal to… because.… This union is a subset of the union; so, this is 

less than mu of union i equal to 1 to infinity of Ais because each one is a subset of this; 

so, this union is subset of this (Refer Slide Time: 33:46). From here, this is less than or 

equal to summation i equal to 1 to infinity of mu of Ai

We have shown that whenever A is an element in the algebra is a subset of union of A

.  

is, 

i equal to 1 to infinity (Refer Slide Time: 34:11), then mu of A is less than or equal to 

summation mu of Ais. That proves that mu is countably subadditive. We have shown if 

mu is countably additive, then this implies mu is finitely additive and also mu is 

countably subadditive (Refer Slide Time: 34:32). That completes one part of the proof; 

let us prove the other way around implication. 



(Refer Slide Time: 34:42) 

 

 

Assume mu is finitely additive and mu is countably subadditive. We have to show mu is 

countably additive. To prove countable additivity, what do we have to show? Let A 

belong to algebra and A be equal to disjoint union Ais, 1 to infinity and Ais belonging to 

algebra. We have to show mu of Ai is summation mu of Ais. Now, by countable 

subadditive property which is given to us, countable subadditive implies that mu of A is 

at least less than or equal to sigma i equal to 1 to infinity mu of Ais; countable 

subadditivity implies the fact that this is less than or equal to this (Refer Slide Time: 

36:09). 



We have to prove only the other way – show that mu of A is also greater than or equal to 

sigma i equal to 1 to infinity mu of Ai; this is what we have to show. Here is a small 

observation: to show this, it is enough to show that mu of A is bigger than or equal to 

sigma i equal to 1 to n mu of Ai for every n. If you can show for every n that mu of A is 

bigger than or equal to this, then it also will be true for i equal to 1 to infinity because 

this is nothing but limit of these partial sums; this is enough to show; we have to only 

show that mu of A is bigger than or equal to sigma mu of Ai

(Refer Slide Time: 37:13) 

s, i equal to 1 to n.  

 

Note that A equal to union Ai, i equal to 1 to infinity implies for every n, the union Ai, i 

equal to 1 to n is a subset of A for every n. We are in algebra; so, this set is in the 

algebra; this is in the algebra (Refer Slide Time: 37:37). mu finitely additive implies mu 

monotone and hence implies that mu of union Ai, i equal to 1 to n will be less than or 

equal to mu of A for every n; again by finite additivity, this is nothing but sigma i equal 

to 1 to n mu of Ai is less than or equal to mu of A for every n; this is happening for every 

n. We can let n go to infinity and so i equal to 1 to infinity mu of Ai

That proves the other way around inequality also of the required thing; this proves this 

(Refer Slide Time: 38:31); that proves that mu is countably additive. What we have 

proved is the following (Refer Slide Time: 38:43). We have given a characterization of 

countable additive property of set functions which are finitely additive. If mu of empty 

 is less than or equal 

to mu of A. 



set is equal to 0, then mu is countably additive if and only (note here the if and only if – 

we have proved both ways) mu is both finitely additive and countably subadditive. This 

is a characterization of countable additiveness of set functions, but, of course, the domain 

of the set function should be an algebra; that is important; this is a very useful criterion 

for countable additivity.  

(Refer Slide Time: 37:13) 

 

We will prove another characterization of countable additivity of set functions in terms 

of increasing and decreasing limits; that we will in the next theorem. That theorem is 

again about set functions defined on algebras. 



(Refer Slide Time: 39:50) 

 

The theorem says the following: let A be an algebra of subsets of a set x and mu be 

finitely additive and with the property, of course, mu of empty set is equal to 0. Then, we 

want to prove that mu is countably additive if and only if, once again it is a 

characterization, the following property holds. The property says for any element A in 

the algebra A, we should have mu of A is limit of mu of Ans. What are Ans? Whenever 

An is a sequence of sets in the algebra which is decreasing – n is a subset of An plus 1 for 

every n and the sequence An

Sorry, A

 should be decreasing and A should be ((.)). 

n should be increasing; An is the subset of An plus 1; that means Ans are 

increasing sequence of sets in the algebra and A is the union of all these sets An. This is a 

characterization of countable additiveness of the set function mu provided one can prove 

the following: for any set A and for any sequence An of sets in the algebra which is 

increasing and A is the union, we should have mu of A equal to limit mu of Ans. Let us 

prove this property once again. 



(Refer Slide Time: 41:25) 

 

To prove this, what do we have to show? First, let mu be countably additive. We have to 

show the following. Take a set A belonging to the algebra, take a sequence Ans 

belonging to the algebra such that An is subset of An plus 1 and A is equal to union of Ans. 

We should show that mu of A is equal to limit n going to infinity mu of Ans; that is what 

is to be shown. Let us observe that A is union of An

The obvious thing is try to write the union as a countable disjoint union; we do that. 

Proof: let B

s and we are given something about 

countable additivity. 

n be defined as An minus union Ai, i equal to 1 to n minus 1 for every n 

bigger than or equal to 1. Then, as observed earlier, each Bn belongs to the algebra; Bns 

are disjoint; and A which is union of Ans is also equal to union of Bns. Of course, this is 

disjoint; let me write that this is equal to this (Refer Slide Time: 43:16). It implies by 

countable additive property mu of A is equal to mu of this union Bns and by countable 

additive property, that is summation n equal to 1 to infinity mu of Bns; that is by 

countable additive property. 



(Refer Slide Time: 43:52) 

 

But we do not want Bns; we want something in terms of Ans; here is an observation. This 

summation I can write as limit k going to infinity of the partial sums so n equal to 1 to k 

of mu of Bns but Bns are disjoint; this is same as limit k going to infinity of mu of union 

Bn, n equal to 1 to k because Bn

If you note, once again, mu is given to be countable additive and hence it is finite 

additive; by finite additive property, this is true. Now, the observation is that the union of 

B

s are disjoint; by finite additive property, this must be 

true. 

ns n equal to 1 to k is same as the union of As. This is the same as k going to infinity 

mu of union An, n equal to 1 to k but note we have not used anywhere the fact that Ans 

are increasing. Since Ans are increasing, what is this union? This union is precisely mu 

of the largest set; that is Ak; so, that is mu of Ak

We have shown mu of A is limit of mu of A

 (Refer Slide Time: 45:21). 

ks going to infinity whenever An is a 

sequence which is increasing (whenever Ans are increasing) and A is equal to union 

(Refer Slide Time: 45:40). We have proved one way – countable additivity implies the 

required property. Let us look at the converse (Refer Slide Time: 45:47). 



(Refer Slide Time: 45:49) 

. 

Conversely, let us assume mu has the given property. What is the given property? The 

given property says whenever a set A is written as union of Ans and Ans are increasing, 

then mu of A is equal to mu of the union. We want to show that mu is countably 

additive; that is, let us take a set A which is disjoint union of sets An, n equal to 1 to 

infinity where A and all An

We have to show that mu of A is equal to summation mu of A

s are in the algebra.  

ns but this I can write it as 

union over k 1 to infinity union An, n equal to 1 to k. Instead of taking n equal to 1 to 

infinity, take union of sets A1, A2 up to Ak and then take the union over k; both will be 

same. But the advantage of this way is that if we call this as Bk, then Bk is a set in the 

algebra because it is a finite union of sets in the algebra; Bk

By the given hypothesis, mu of A is equal to limit k going to infinity mu of B

 is increasing because we are 

taking union of more and more sets and their union is equal to A. 

k. Now, let 

us go back to represent Bk in terms of As; that is, limit k going to infinity mu of union 

An, n equal to 1 to k. We use the fact that mu is finitely additive; this is limit k going to 

infinity summation n equal to 1 to k of mu of Ans, which is same as sigma 1 to infinity of 

mu of Ans. That says whenever A is a disjoint union of countable disjoint union of sets 

in the algebra, mu of A is sigma mu of Ans; that is the countable additive property of the 

set function. 



We have proved the theorem completely, namely, if A is an algebra of subsets of a set x 

and mu is finitely additive with that property, then mu is countably additive if and only if 

mu has the property that mu of A is the limit of mu of Ans whenever An is increasing 

and An

Let us state that result and prove it also (Refer Slide Time: 49:41). If A is an algebra of 

subsets of a set X and mu is finitely additive so that conditions are same as ((.)).We want 

the additional condition that mu of the whole space is finite; this is the additional 

condition put to state the result, namely mu of the whole space is finite. It says mu is 

countably additive if and only if the following holds: for any set A in A whenever mu of 

A is equal to limit n going to infinity mu of A

 is equal to union of the sets (Refer Slide Time: 48:59). This is characterizing 

countable additivity in terms of limits of increasing sequence of sets. This property says 

that mu is continuous from below at the point A; so countable additivity for a finitely 

additive set function is the same as saying they are continuous from below at the point A; 

from below because A is union of these sets. There is a corresponding result for 

sequences which are decreasing. 

n and whenever Ans are decreasing; An plus 

1 is subset of An and A is the intersection. Countable additivity is equal to saying for 

every set A in the algebra, if A is intersection of a decreasing sequence of sets Ans, then 

mu of A must be equal to limit of An

(Refer Slide Time: 50:52) 

s. 

 



The proof of this uses the earlier theorem. Let us assume mu is countably additive and 

Ans decrease to A, all in the algebra A. We want to show that mu of A is equal to mu of 

Ans. We have to show mu of A is limit n going to infinity mu of An. We know 

something about increasing sequences. From decreasing, we want to manufacture an 

increasing sequence; that is done via complements. So, define Bn to be equal to X minus 

An for every n. Then, each Bn belongs to the algebra A; Bn is decreasing because Ans are 

Bns are sorry increasing as Ans are decreasing. Where do they decrease? The Bns 

increase to X minus A because An

By the earlier theorem, countable additivity implies whenever a sequence is increasing 

mu of X minus A must be equal to limit n going to infinity mu of X minus B

s are decreasing to A. 

n, but now 

we use the fact that mu of x is finite. This is same as mu of X minus mu of A (Refer 

Slide Time: 52:27). This thing is equal to mu of X minus mu of Bn and this is possible 

only because we have the fact that mu of the whole space is finite; so, everything is a 

finite quantity and we have already shown mu of the difference is equal to difference of 

mus provided the things are finite. So, this is equal to limit of this. Now, X cancels, 

negative sign, limit; so, mu of A is equal to limit mu of An

(Refer Slide Time: 53:12) 

s n going to infinity; countable 

additivity implies this. 

 

Let us assume this has that property that whenever Ans increase… mu has the given 

property. We have to show mu is countably additive. Let us take A equal to a disjoint 



union Ais. What is X minus A? That is intersection of i equal to 1 to infinity X minus… 

let us cite this as union of n equal to 1 to infinity union of Ais, i equal to 1 to n. These are 

the ((.)). It is X minus union Ai, i equal to 1 to n; that is equal to intersection i equal to 1 

to n; and this says nothing but, x minus so. Let us call this set as Bn

Note that B

. 

ns are decreasing and they are in the algebra because ((.)) the Ans are union n, 

this will be increasing and so this will be decreasing; so, mu of x minus A by the given 

hypothesis is limit n going to infinity mu of Bns. What is mu of Bn? mu of B n is X 

minus this; that is equal to mu of X minus limit n going to infinity mu of the union that is 

disjoint; so, summation i equal to 1 to n mu of Ans. This is equal to mu of X minus mu of 

A because everything is finite. This cancels with this (Refer Slide Time: 55:13) and so 

mu of A is limit of this, which is equal to sigma 1 to infinity mu of An

We have proved that mu is countably additive if and only if for a decreasing sequence of 

sets A

s. That proves 

countable additivity. 

n

(Refer Slide Time: 55:54) 

 A equal to this intersection mu of A is the limit under the condition mu of X is 

finite (Refer Slide Time: 55:39). This is important and this condition cannot be removed; 

this kind of thing is called continuity from above. 

 

Here is a remark that the condition mu of X is finite is necessary in the second part and 

cannot be removed. We request you to construct an example; you can construct very 

easily an example on the real line with length function as the set function. Here is an 



exercise for you to do ((.)) such that mu is finite. Last part, we said An decreasing to A; 

that you can actually reduce a bit. It says whenever Ans are decreasing to empty set; that 

is also equivalent to saying that mu is countably additive. These two parts we would like 

you to explore and understand and answer these questions. Thank you. Let us stop.  


