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The Length Functions and its Properties 

Welcome to lecture 6 on measure and integration. If you recall, in the previous lecture, 

we had started looking at various properties of the length function. In today's lecture, we 

will continue looking at the properties of the length function and then we will try to 

characterize some other countably additive set functions on the class of all intervals in 

the real line. 

(Refer Slide Time: 00:49) 

 

The first topic we will continue with is the length function and its properties and then 

countably addictive set functions on algebras. 



(Refer Slide Time: 00:56) 

 

Let us just recall the properties of the length function that we have already proved. The 

length function was defined on the class of all intervals, that is, I and to every interval 

with left end point a and right end point b; it need not be left and right; normally, you 

will write the left end point a first and right end point b later. For an interval with end 

points a and b, we defined its length lambda of I as the absolute value of b minus a if a 

and b are real numbers; in case either of it is plus infinity or minus infinity, we defined 

the length to be infinite. For all finite intervals, the length is the usual concept of the 

difference between the values of the end points, that is, the absolute value of b minus a 

and plus infinity if the interval is infinite. 



(Refer Slide Time: 01:52) 

 

We proved the properties that the length of the empty set and that the interval is 0; then, 

we proved the monotone property of the length function, namely length of I is less than 

length of J if I is the interval which is inside the interval J; then, we proved the finite 

additivity property, namely if an interval I can be written as a finite disjoint union of 

intervals Ji, i equal to 1 to n, then the length of the interval I is the same as summation of 

lengths of the individual intervals. So, if I is a finite disjoint union of intervals, the length 

of I is summation over length of Ji

(Refer Slide Time: 02:38) 

s. 

 



Then, we looked at a slight extension of this property, namely if I is a finite or an infinite 

interval (actually, we looked at that) and it is contained in a union of the intervals Iis, that 

is, I is covered by a finite union of intervals which need not be disjoint, then length of I is 

less than or equal to summation length of the intervals Ii

I is covered by a finite union and then we extended this property to the arbitrary 

countable union. So, if I is an interval which is covered by a countable union of intervals 

I

s 1 to n, the finite number of 

them.  

i

(Refer Slide Time: 03:43) 

 which need not be disjoint, then we proved that lambda of I is less than or equal to 

summation of length of the individual intervals. If you recall, this property used what is 

called the Heine–Borel property on real line. 

 

Let us continue our study. The next thing we want to prove is the following: if I is an 

interval which is any interval which is a finite interval, say, and it is a union of intervals 

Ins, n equal to pairwise disjoint intervals, then the length of I is equal to sigma length of 

Ins. This property in fact we had proved; let us prove it once again. 



(Refer Slide Time: 04:23) 

 

 

Let us look at this property. If I is an interval which is written as a union of intervals Ins, 

n equal to 1 to infinity, I is finite (keep in mind we are keeping I as a finite interval) and 

In intersection Im is equal to empty, then that implies the length of I is equal to sigma 

length of Ins, 1 to infinity. Recall that we have already shown that length of I is less than 

or equal to sigma length of In

To prove the other way round, we have to show that length of I is bigger than or equal to 

sigma I equal to 1 to infinity length of I

s. That is because of the property that we just now proved: I 

is covered by a union of intervals and so length of I must be less than or equal to this 

(Refer Slide Time: 05:16). 

is; this is what is to be shown. Let us note that for 



any n, I1 up to In are the intervals which are contained in I. I is finite; so, let us say this is 

the interval with end points a and b; that is I. I1 is the interval which is inside a, b; so, it 

has end points say a1 and b1; I2 has end points say a2 and b2; In has end points an and bn

But these being finite numbers and disjoint, we can arrange the intervals like a

. 

1 here, b1 

here, maybe a2 here, b2 here and so on and an here and bn here (Refer Slide Time: 

06:28). What we are saying is we can assume without loss of generality and we can say 

that a is less than or equal to a1 is less than b1 less than or equal to a2 less than a2 less 

than b2 and less than or equal to and so on and less than or equal to bn

(Refer Slide Time: 07:01) 

 less than or equal 

to b. 

 

Once that property is true, we can ((.)) that b minus a is bigger than or equal to bn minus 

a1 which is bigger than or equal to… now, we can add and subtract consecutive terms; 

so, bn minus an plus bn minus 1 minus an minus 1 and so on plus b1 minus a1. So, add and 

subtract terms; subtract a bigger term and add a smaller term and so on. This is equal to 

sigma i equal to 1 to n length of Ii

What we have gotten is true for every n. Sorry, this is bigger than or equal to (Refer 

Slide Time: 07:47). So, this is bigger than or equal to sigma i equal to 1 to infinity length 

of I

s and this b minus a is length of I. 

is, i equal to 1 to infinity. That proves the other way round inequality also (Refer 

Slide Time: 08:00). Hence, what we have shown is that the length function has the 

property that whenever a finite interval is written as a countable union of disjoint 



intervals, then the length of the interval I is equal to summation of the lengths of the 

individual intervals (Refer Slide Time: 08:02). We would like to extend this property not 

only to finite intervals but in fact to any interval. For that, we need a result. 

(Refer Slide Time: 08:35) 

 

Suppose I is any interval, then we want to claim that the length of I is equal to 

summation lengths of I intersection the interval n to n plus 1; this is the property we 

would like to prove. In fact, one can have here the interval which is left-open n and right-

closed n plus 1 because the end point is not going to matter. We want to prove that the 

length of an interval I is the same as the lengths of its pieces which lie inside the 

intervals n to n plus 1. To prove this property, let us observe the following. 



(Refer Slide Time: 09:26) 

 

Let us observe; this is a real line; so, we can write it as the intervals, say, 0, 1, 2 and so 

on; on the other side, here is minus 1, minus 2 and so on. Let us take an interval I. If I is 

finite, if it is a finite interval, then obviously it will lie between some bounds. If finite, 

then there exists some n and m such that I is inside n and m. Here is some n and here is 

some m so that I is inside this (Refer Slide Time: 10:26).  

Now, let us look at the pieces inside. This is n plus i and this is n plus i plus 1; so, 

intersection with this I. What we are saying is this I can be written as union of n to n plus 

i, i equal to, so 1 to up to up to n plus i equal to m, so that i equal to m minus n. Now, let 

us observe that these pieces are a disjoint union; this union is a disjoint union and a finite 

number of them; so, this will imply length of I is equal to summation i equal to 1 to m 

minus n lengths of n, n plus i.  

This interval I does not intersect with any other interval which is bigger than m and 

which is less than n. So, for all those intervals, the intersection with I is empty. What I 

can write is this is the same of sigma of i equal to 1 to m minus n. I should have written 

the intersection with the interval I because the interval may start somewhere here; so, let 

us write this is intersection with the interval I (Refer Slide Time: 12:14). Let me write 

this again. This is intersection with I (Refer Slide Time: 12:21). 



(Refer Slide Time: 12:27) 

 

Let us write this again. The I is written. I can be written as a union n to n plus… Sorry, 

this is also not wrong ((.)). I can be written as union n plus i to n plus i plus 1 intersection 

I, i equal to starts with n, so 0 and goes up to when n plus i plus 1 is equal to, so that is m 

minus, we want n plus this is equal to m, so m minus n minus 1. That implies length of I 

and because this is a finite disjoint union, this is equal to summation i equal to 0 to m 

minus n minus 1 length of n plus i to n plus i plus 1 intersection I.  

Now for the other parts ((.)) 0, I can write it as sigma over i belonging to integers length 

of n plus I, n plus i plus 1 intersection I over all integers i because the intersection with 

the other intervals is going to be empty and that is going to be 0. This proves that 

whenever I is finite, we are through; so, the I finite case is okay. 



(Refer Slide Time: 14:19) 

 

Now, let us prove the same thing when I is infinite. Let us take I as infinite. Then, I can 

write I is equal to union of same thing n to n plus 1 intersection I, i belonging to integers. 

This is keeping in mind that the real line is equal to union n to n plus 1, n belonging to 

integers; so, interval I is this intersection this (Refer Slide Time: 15:40). Now, because I 

is infinite, let us say it looks something like a to plus infinity.  

I infinite implies that n to n plus 1 intersection I is equal to n to n plus 1 for infinite ns

This is an important property; it says length of any interval is a summation of lengths of 

its pieces. Note that length of each one of these pieces being a finite interval is a finite 

number. This says that any interval can be written as a countable disjoint union of 

intervals, each having finite length. This is an important property which is going to be 

called as sigma finiteness property of the real numbers of the length function. 

. In 

fact, if n is bigger than or equal to a, then that is the interval (Refer Slide Time: 15:40); 

here is a and here is n; then, n to n plus 1 and so on are all going to be nonempty 

intersections, with the intersections being equal to n plus 1. This implies that sigma 

length of n to n plus 1 intersection I is going to be equal to plus infinity over all n 

belonging to Z; that is the same as length of I because I is an infinite interval. This 

proves the property that for any interval I, the length of the interval can be written as the 

length of its pieces I intersection n to n plus 1 (Refer Slide Time: 16:34). 



(Refer Slide Time: 17:16) 

 

We are going to use this property to prove what is called countable additive property of 

the length function. That says that if an interval I is written as a countable disjoint union 

of intervals Ins, then the length of the interval I is equal to summation length of In

(Refer Slide Time: 17:49) 

s. 

 

Let us start looking at the proof of this property. To prove this property, let us write I is 

an interval. I is an interval which is written as a union of Ins, n equal to 1 to infinity 

where the intervals In intersection Im is equal to empty. We have to show that length of I 

is equal to summation length of Ins, n equal to 1 to infinity. Let us look at a proof of this. 



Case I, let I be finite; actually, finite or infinite is not important; let us take a general case 

itself. Note that length of I is equal to summation length of I intersection n to n plus 1; 

this is because of the property that we have just now proved. Also note that I intersection 

n to n plus 1 can be written as shown here. This is a finite interval (Refer Slide Time: 

19:07).  

So, this is n to n plus 1 intersection… This interval I is a countable disjoint union; so, it 

is a union of Ij, j equal to 1 to infinity. We can write this as union j equal to 1 to infinity 

of Ij intersection n to n plus 1. Now, this is an equality for finite intervals only, because I 

intersection n to n plus 1 is a finite interval which is written as a; because Ij

Thus, this implies, by the additive property for finite intervals which are disjoint, that 

lambda of I intersection n to n plus 1 is equal to summation j equal to 1 to infinity 

lambda of I

s are disjoint, 

these intervals are disjoint and they are finite. 

j

(Refer Slide Time: 20:54) 

 intersection n to n plus 1. Here, we are using the fact that whenever an 

interval I is a finite interval which is a countable disjoint union of intervals 1 to infinity, 

then the length of I is equal to summation of length of this. Look at this equation here 

and look at this equation here (Refer Slide Show: 20:40). Length of I is equal to 

summation n over integers length of I intersection n to n plus 1 and that is computed to 

be equal to this (Refer Slide Show: 20:50).  

 



Combining these two, we get the property that length of I is equal to summation n 

belonging to Z of length of I intersection n to n plus 1 and that property we are going to 

put here; so, summation j equal to 1 to infinity lambda of Ij intersection n to n plus 1. 

Keep in mind that this is a double summation of the series and all of them are 

nonnegative; so, I can interchange the order of integration. I can write this as summation 

over j equal to 1 to infinity summation over n belonging to integers of length Ij

Once again, I used the fact that length of interval I

 

intersection n to n plus 1.  

j can be written as length of Ij 

intersected with n to n plus 1 summation over n belonging to Z; just now we have proved 

that fact – the sigma finiteness of the length function; any interval length I is summation 

length of its pieces inside n to n plus 1. This is here (Refer Slide Time: 22:22); this gives 

me the length of I is equal to summation j equal to 1 to infinity and this is length of Ij

That proves the countable additive property of the length function that if an interval I is 

written as a countable disjoint union of intervals I

.  

ns, then the length of I is equal to 

summation length of In

(Refer Slide Time: 23:11) 

s; whether I interval I is finite or infinite does not matter (Refer 

Slide Time: 23:04). The length function is countably additive; that is what we have 

proved; that is an important property of a length function. 

 

Let us extend this property to coverings which are not necessarily disjoint; that is called 

countable sub additivity. That says that if an interval I is such that I is contained in union 



of intervals Ins, n equal to 1 to infinity which may not be disjoint, then obviously we 

should expect that the length of I is less than or equal to summation length of In

(Refer Slide Time: 23:52) 

s. 

 

Its proof is very much similar to the earlier case. Let us just go through the proof again 

so that we understand how sigma finiteness of the length function is used. I is an interval 

which is contained in union of Ins, n equal to 1 to infinity; these intervals In

Now, the interval I intersection n to n plus 1 is inside because I can write this I as union 

over I

s may not be 

disjoint. Now, what we do is look at length of I; I can write this is equal to sigma n 

belonging to Z length of I intersection n to n plus 1; that is, sigma finiteness of the length 

function. 

ns. Let me write this is less than or equal to sigma length over n; this thing is less 

than or equal to sigma length of Ij

Once again, it is a series of nonnegative numbers and I can interchange. So, this is equal 

to sigma j equal to 1 to infinity sigma n integers length of I

 intersection n, n plus 1, j equal to 1 to infinity. Here, 

we have used the fact that this intersection this interval is covered by the union of these 

intervals. This is a finite interval (Refer Slide Time: 25:03). So, the length of this must be 

less than or equal to length of this. 

j intersection n to n plus 1. 

Once again, this is nothing but the length of the interval Ij by the sigma finiteness of the 

length function. Length of I is less than or equal to sigma length of Ijs. This property is 

called countable subadditive property of the length function (Refer Slide Time: 25:52). 



(Refer Slide Time: 25:56) 

 

Here is a very important property of the length function which is called translation 

invariance. It says that if I take an interval I and translate it by some number x, then the 

length of it does not change. It says length of I is equal to length of I plus x when I take 

an interval I and translate. This is a translated set; just shift it or push it by a distance x. I 

plus x is all y plus x, y belonging to I. This property is obvious. 

(Refer Slide Time: 26:43) 

 

This property of translation invariance is quite obvious. Let us say it is an interval with 

left end point a and right end point b. Then, I plus x is the interval with the left end point 



a plus x and right end point b plus x. Length of I plus x is same as b plus x minus a plus x 

which is equal to b minus a which is equal to length of I. Length of I is same as length of 

I plus x; this is for finite.  

The same proof ((.)) continues for infinite. For example, if I is equal to say a to infinity, 

then what is I plus x? I plus x is a plus x to plus infinity. In either case, length of I is 

equal to plus infinity which is the same as length of I plus x. We are basically observing 

that if I is an infinite interval, its translation remains an infinite interval; the values of 

both are equal to plus infinity. This is what is called the translation invariant property of 

length function (Refer Slide Time: 27:51). 

(Refer Slide Time: 27:55) 

 

Finally, let us prove what is called the finite additivity property of the length function. 

We have used finite additive property of the length function for finite intervals and we 

proved countable additivity property for the length function. I just want to exhibit that 

the countable additivity implies finite additivity when we have the fact that the length of 

the empty set is equal to 0. 



(Refer Slide Time: 28:32) 

 

Basically, what we are going to say is if I is an interval which is the union of Ij, j equal to 

1 to n where Ij intersection Ik is equal to empty, then I can also write it as union of j 

equal to 1 to infinity Ij where I can define Ij to be equal to empty set if j is bigger than n 

plus 1. From n plus 1 onwards, put everything equal to 0. Then, I is a countable disjoint 

union of intervals; so, length of I must be equal to summation length of Ij

That is the same as summation j equal to 1 to n length of I

 by countable 

additivity property.  

j because from n plus onwards 

they are empty and so the length is equal to 0. Countable additivity implies finite 

additivity whenever length of the empty set I can put equal to 0 (Refer Slide Time: 

29:27). Let us just recapitulate the various properties of the length function that we have 

proved, namely the length function is a set function defined on the class of all intervals in 

the real line with the properties that it is countably additive, countably subadditive, 

finitely additive, finitely subadditive, and translation invariant. The important property is 

that it is countably additive. 



(Refer Slide Time: 30:06) 

 

In view of this, the next question that arises is the following. The length function is a 

measure which is translation invariant because it is countably additive and length of the 

empty set is equal to 0. Also observe that the length of the singleton is equal to 0; this is 

also a property of the length function because the singleton set can be written as an open 

interval or a closed interval with the same end points and so the length will be equal to x 

minus x which is equal to 0. 

It is finitely additive and countable subadditive – that we observed. Here is the question: 

are there other countably additive set function on the class of intervals? We would like to 

know. Length function which we just now proved is one such function which is 

countably additive set function on the class of all intervals. Are there other countable 

additive set functions on intervals? 

To answer this question, let us make a notation. We will denote by I upper tilde; there is 

a wave kind of a sign; this symbol is called calligraphy I (Refer Slide Time: 31:25). The 

collection of all left-open right-closed intervals will be denoted by this symbol cal I, 

calligraphy I, with the upper tilde. This is a collection of all left-open right-closed 

intervals – intervals whose left end point is not included but right end point is included. 

Keep in mind that if it is infinite, then there is no right end point on the real line. This is a 

collection of all left-open right-closed intervals. 



(Refer Slide Time: 31:56) 

 

What we are going to prove is the following. Suppose we have got a set function mu on 

the class of all left-open right-closed intervals such that, let us say, it is finitely additive 

(this mu is given to be finitely additive) and also given the fact that mu for a finite 

interval is finite for every a and b. Then, we want to prove that this can be characterized 

by the distance of a monotonically increasing function F from R to R such that mu of the 

left-open right-closed interval a, b is given by F of b minus F of a for every a belonging 

to R.  

What we want to show is that if mu is given to be a finitely additive set function on the 

class of all left-open right-closed intervals with the property that mu of finite interval is 

finite, then we want to show that this must be given by a monotonically increasing 

function F with a relation that mu of a, b is that nothing but F of b minus F of a. Keep in 

mind: if mu is the length function, then the obvious choice for F is the identity function y 

equal to x; then, it will be equal to b minus a. 

In some sense, we are generalizing the length function; that means if mu is any finitely 

additive set function, then it must be given by this (Refer Slide Time: 33:47). To prove 

this, let us observe that mu of a, b is given by F of b minus F of a. That itself tells us 

what should be the definition of the function F. For example, if I fix here a point a, if a is 

fixed, that means F of a is fixed and then I can calculate F of b as equal to mu of a, b plus 

F of a. 



This relation itself gives me a hint on how I should define the function F. Let us fix an a 

and the most convenient point is to fix a to be the origin. We will also show later on that 

if mu is countably additive, then this function can be chosen to be not only 

monotonically increasing but the right-continuous function. 

(Refer Slide Time: 34:49) 

 

Let us define our function F from the real line. F at any point x in the real line is defined 

as mu of the open interval 0, closed at x – left-open, right-closed interval 0, x; size or mu 

of that if x is bigger than 0; it is defined as 0 if x is equal to 0 because that will mean mu 

of the empty set is equal to 0 – it is countably additive; mu of F of x to be equal to minus 

of mu of x, 0 if x is less than 0 because if F of x is less than 0, then this point x is going 

to be on the left side of 0; so, it is left-open right-closed interval. With this definition of 

mu, we want to claim that this function has the required properties. Let us check these 

properties of this function. 



(Refer Slide Time: 35:59) 

 

First, this satisfies the required equation. We want to check that for an interval a, b, mu 

of a to b is equal to F of b minus F of a. To check that, let us take this as the point 0. If a 

and b are both finite numbers, real numbers, let us say this is the interval a to b, then F of 

b minus F of a is equal to mu of 0, b minus mu of 0 to a. Let us observe that mu is given 

to be finitely additive. This is the same as mu of a to b because I can write 0 to b as union 

of 0 to a and union of 0 to b – disjoint intervals, disjoint pieces. Using that fact, this is 

just mu of a, b; that proves it (Refer Slide Time: 37:06). 

Similarly if it is infinite, supposing the interval I is a to plus infinity, then I can write this 

as equal to… we have to… this is equal to mu of… it is finite. Let us observe one thing: 

if the interval I is infinite, then what is mu of I equal to? We have not defined what is the 

relation between this and the function. Keep in mind that we have defined F of x is equal 

to mu of 0 to F if x is equal to finite and this is equal to this if this is finite (Refer Slide 

Time: 38:06). 

We want to check that this satisfies the required property; if I is equal to a to plus 

infinity, then I want to check that mu of I is a equal to F of... Sorry, this is only for finite 

intervals. I am sorry; we wanted to check only for finite intervals that this property is 

true. Whenever an interval I is a finite interval, then we know this is finite and this 

property is true (Refer Slide Time: 38:44). 



(Refer Slide Time: 38:51) 

 

Now, let us check the next property, namely that F is monotonically increasing. Let us 

check this property. Let us take two points; let us take the case here is 0, here is x and 

here is y. We have got x less than y and we want to check F of y; we want to calculate F 

of y. What is F of y? By definition, it is mu of 0 to y and that I can write as mu of 0 to x 

using finite additive property I can write 0 to x union of x to y mu of that and that by 

finite additive property is mu of 0 to x plus mu of x to y.  

Now, this is equal to F of x by definition (because this is equal to F of x) plus mu of x to 

y. This is some nonnegative quantity (Refer Slide Time: 39:56). So, we can write that 

this is bigger than or equal to F of x. If x is less than y, then F of x is less than F of y. 

That proves it is monotonically increasing in the case when both x and y are on the right 

side of it. 



(Refer Slide Time: 40:13) 

 

The same proof will work if it they are both on the left side of 0. Here is y and here is x. 

We have got y less than or equal to x. We want to look at what is F of y; that is equal to 

minus mu of y to 0 by definition; that is equal to minus y to 0. This I can write as mu of 

y to x union x to 0. That again by additive property is minus mu of y to x minus mu of x 

to 0; this is equal to minus mu of y, x plus F of x because F of x is defined as minus of 

this (Refer Slide Time: 41:14). This is a negative quantity and that means F of y is less 

than or equal to F of x. Once again, that property is true. 

(Refer Slide Time: 41:30) 

 



The third case: let us take it is 0 here, y here and x here. In that case, what is F of y? Let 

us look at y to x. Sorry. What is mu of y to x? From this, I can write it as equal to F of y 

minus F of x by definition. This is bigger than or equal to 0. Sorry, this is F of x minus F 

of y (Refer Slide Time: 42:16). That means F of y is less than or equal to F of x. Once 

again, in all possible cases, we have checked that F as defined above is a monotonically 

increasing function. 

(Refer Slide Time: 42:35) 

 

We want to check now that if mu is countably additive, then this implies F is right 

continuous – continuous from the right. The finite additivity property gave us that F is 

monotonically increasing and we are claiming that if mu is countably additive, then F 

must be right continuous. What is right continuity? Let us take a point x; let x belong to 

R; let us take a sequence xn such that xn decreases to a point x. We have to show that F 

of xn converges to F of x; that is what we have to show – F of xn

Let us try to look at a picture. This is 0. Let us look at the case when x is bigger than 0. 

This is the case when x is bigger than or even equal to 0. Here is the sequence x

 converges to F of x.  

n 

decreasing to x. That means here is xn, here is xn plus 1 and so on and that is decreasing to 

x. Let us observe in this case; look at the interval which is 0 to xn. This interval 0 to xn I 

can split as interval 0 to x left-open right-closed and then x to union of x to xn (Refer 

Slide Time: 44:38). 



Now, I want to split this portion also. So, the interval x to xn, this interval (Refer Slide 

Time: 44:53) is same as… Let us start; this part is xn plus 1 comma xn; the next part will be 

xn plus 2 comma xn plus 1 and so on. I want to claim that this is union of xn plus k to xn, k 

equal to 1 to infinity. That is because if I take any point between x to xn, take any point 

here (Refer Slide Time: 45:34), this xn converges; so, it is going to cross over this point, 

any point inside the interval x to xn

It is quite easy to check that x to x

. That means that it is going to fall inside one of these 

intervals and all these intervals are subsets of it.  

n, this interval, is a union of intervals xn plus k to xn, k 

equal to 1 to infinity. Here, we are using the fact that xn decreases to x; this fact is being 

used here (Refer Slide Time: 46:11). Now, realize that x to xn

(Refer Slide Time: 46:25) 

 is a countable disjoint 

union of these intervals and mu is given to be countably additive; so, what we have is the 

following property. 

 

That says mu of x to xn is equal to summation k equal to 1 to infinity of mu xn plus k 

comma xn. Let us write this in terms of F. That means F of xn minus F of x is equal to 

summation k equal to 1 to infinity of F of xn minus F of xn plus k. This is a series of 

nonnegative terms and so I can write as limit of the partial sums. Let us write limit of m 

going to infinity of summation k equal to 1 to m F of xn minus F of xn plus k. This is equal 

to limit m going to infinity.  



Now, this is a partial sum (Refer Slide Time: 47:35). What does that mean? This is k 

equal to 1; n to n plus k; so, n to n plus 1 ((.)). This is a sum where terms will cancel out; 

let me just write it. This is nothing but F of xn minus F of xn plus 1. The next term will be 

plus F of xn plus 2 minus F of xn plus 3

That means what? We are starting with k equal to 1 n to n plus 1; so, n plus 2 k plus 1. 

What are the terms which are cancelling? This says n plus 1, n plus 2, n n to so n plus. 

Sorry, it should be n plus 1 minus n plus 2 (Refer Slide Time: 49:06). When the next 

term comes, n plus 1, n plus 2 and so on, these terms cancel. What we will be left with is 

limit m going to infinity of F of x

 and so on; it will be going up to m; so, k is equal to 

m; so, minus F of n plus m (Refer Slide Time: 48:26).  

n minus F of xn plus m

(Refer Slide Time: 49:36) 

. Sorry, this is x (Refer Slide Time: 

49:27). That means what we get is the following. This is independent of m (Refer Slide 

Time: 49:35). 

 

What we get is left-hand side was F of xn minus F of x is equal to F of xn minus limit m 

going to infinity of F of xn plus m. These cancel out; the negative sign cancels out (Refer 

Slide Time: 49:57). We get limit m going to infinity F of xn plus m is equal to F of x. That 

is the same as saying that F is continuous from the right at x; that we have proved when x 

is bigger than or equal to 0; when x is bigger than or equal to 0, this is right continuous. 

The other case is when x is negative and still whenever xn converges to 0 or xn decreases 



to 0, we will show that F of xn converges to F of x, showing that F is right continuous at 

x when x is negative also; we will do this in the next lecture. Thank you. 


