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Welcome to lecture 5 on measure and integration. If you recall, in the previous lectures 

we have been looking at the various classes of subsets of a set X with various properties. 

We looked at what is an algebra and what is a sigma algebra and a monotone class. 

Today, we will start looking at functions defined on classes of subsets of a set X. 

(Refer Slide Time: 00:48) 

 

We will first look at what are called set functions and then we will look at a very 

important example of a step function, namely the length function. Let us start defining 

what are called set functions. 
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Let us start with C – a class of subsets of a set X. Any function mu (this is a Greek 

symbol called mu) is defined on the class of subsets C of a set X and taking nonnegative 

extended real-valued functions. This interval 0 to plus infinity, both included, denotes the 

set of all nonnegative extended real numbers. A function mu defined on this collection C 

of subsets of a set X taking values in nonnegative extended real numbers is going to be 

called a set function. It is a function whose domain is a collection of sets; that is why it is 

called a set function. 

Next, we will be looking at some special properties; we will be analyzing such functions. 

Let us define a set function mu, of course, where C is a collection of subsets of a set X 

and 0 to plus infinity ((.)) the nonnegative extended real numbers. A set function mu is 

set to be monotone if it has the following property: for any two sets A and B in C, mu of 

A is less than or equal to mu of B whenever A is a subset of B. It is a monotone property 

that whenever A is a subset of B and both are in the collection C, we want that mu of A 

should be less than or equal to mu of B; this is called the monotone property. 



(Refer Slide Time: 02:44) 

 

Next, we look at what is called finite additivity property of a set function mu. A set 

function mu is set to be finitely additive, I am emphasizing the point finitely and 

additive, if it has the following properties: mu of union of sets Ai, i equal to 1 to n, given 

any finite collection of sets A1, A2 up to An in C, mu of the union of the sets is equal to 

mu of Ai

Of course, this will be whenever A

s. 

1, A2, up to An … This is a finite collection of sets in 

C such that their union also belongs to C, for otherwise this number on the left-hand side 

of this equation will not be defined. Further, the sets are pairwise disjoint; Ai intersection 

Aj is empty for i not equal to j. Once again, let us see what is finite additivity. Finite 

additivity means for any finite collection of sets in C, A1, A2, up to An in C, such that 

their union is also an element in C. These sets are pairwise disjoint; for any such finite 

collection of sets, we want that mu of the union is equal to summation of mu of the 

individual Ai

Intuitively, keep in mind that mu in some sense is denoting the size of a set A and so we 

are saying mu of the union is equal to sum of the individual sizes whenever the sets A

s. 

is 

are disjoint; we are requiring it for any finite collection i equal to 1 to n. If A1, A2, up to 

An is any finite collection of sets in C which are pairwise disjoint such that their union is 

an element in C, mu of the union is equal to summation of mu of the individual Ais. 



Such a property is called finite additivity property of mu or one says mu is finitely 

additive. 

(Refer Slide Time: 05:02) 

 

We can extend the generalization of this definition. We will say mu is countably 

additive, from finite we are going to countably additive, if mu of union Ans 1 to infinity 

is equal to summation of mu of Ans, of course, whenever A1, A2, up to An is a sequence 

of sets in C such that the union is also an element of C and they are pairwise disjoint. 

Countable additivity is a property about a sequence of sets A1, A2, An and so on in C 

which are pairwise disjoint and their union is an element in C; we want that for any such 

sequence of pairwise disjoint sets, mu of the union must be equal to summation of mu of 

Ans, n equal to 1 to infinity. 



(Refer Slide Time: 05:59) 

 

There is another notion of called countably subadditive if mu of A is less than or equal to 

summation 1 to infinity mu of Ans whenever A is a set in C and A is contained in union 

of Ans where Ans are also in C for every n. In some sense, if A is covered by a union of 

sets Ans, then we want the size – that is mu of A – to be less than or equal to summation 

mu of An

This is called countable subadditivity because here we are just saying that mu of A is less 

than or equal to and we are not requiring that A

s, n equal to 1 to infinity  

ns are pairwise disjoint; this is called 

countable subadditivity property of the set function ((.)). A set function mu is called a 

measure on C (C is a collection of subsets) if mu has the property that it is countably 

additive (it should be countably additive), the empty set belongs to C and with the 

property that mu of empty set is equal to 0. mu is defined on a collection C of subsets 

and we want the properties that the empty set belongs to C, mu of empty set should be 0 

and mu on this collection should be countably additive; such a set function is going to be 

called a measure on C. 
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Let us look at some examples of set functions; let us start with a very simple one. Let us 

look at a set X which is a countable set; its elements are x1, x2, x3 and so on. X is equal 

to xn, n equal to 1, 2, 3 and so on. Let us fix pn – a sequence of nonnegative real 

numbers. X is a set which is a countable set with elements x1, x2, x3

For any subset A contained in X, let us define mu of the empty set to be equal to 0; for 

the set A if it is nonempty, let us define mu of A to be equal to summation over those p

 and so on and we 

are fixing arbitrarily some sequence of nonnegative real numbers. 

is 

such that xi belongs to A. A is a subset of X and so sum of the xis will belong to A. Look 

at those indices i such that xi belongs to A; pick up those pis from the given sequence pn 

and add them up; that is called mu of A. mu of A is defined as summation over those pis 

such that xi

We want to check that this is a measure on the collection of all subsets of the set X. That 

is quite obvious because mu of empty set is defined to be equal to 0. Let us observe that 

if A is a singleton set, then mu of the singleton set is going to be the number p

 belongs to A.  

i; if a set A 

is a countable disjoint union of sets, let us check that this mu is a measure. 
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We are defining mu of A to be equal to summation pi where i is such that xi belongs to 

A. mu is countably additive. Let us take a set A which is union of Ais, i equal to 1 to n 

and Ais is a subset of A subset of where Ai is any subset of X. We have to check that mu 

of A is equal to… We want Ai intersection Aj to be empty (Refer Slide Time: 10:29). 

We want this to be equal to mu of Ai

Let us observe; it is enough to check when each A

s, i equal to 1 to infinity.  

i is a singleton xi; let us check that 

case first. What is A? This is not xi because x itself is x1, x2, up to xn and so this will be 

the whole space. Let us look at the special case when Ai is equal to some xki, I bigger 

than or equal to 1 (Refer Slide Time: 11:27). Then, the set mu of A is going to be equal 

to summation p of ki, i equal to 1 to infinity. This can be written as limit n going to 

infinity i equal to 1 to infinity pi up to n. These are nonnegative numbers (Refer Slide 

Time: 12:05) and so this sum is nothing but the limit of the partial sums. These are 

nonnegative and so there is no problem in writing it that way. 
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That means mu of A is equal to limit n going to infinity of sigma i equal to 1 to n of pi. 

That means what we want to check? It is summation of mu of each Ai; so, this is limit n 

going to infinity of summation i equal to 1 to n mu of Ai because each one is pi. It is p of 

ki, sorry (Refer Slide Time: 12:56); this summation p of ki. This is ki and this is mu of 

Ai

That is equal to i equal to 1 to infinity mu of A

 (Refer Slide Time: 13:02). 

i. mu of A is equal to summation mu of 

Ais whenever Ai is a singleton set; if not, it is a finite set; each finite is a union of finite 

sets. For a nonnegative series, you can add it anyway you like; it is easy to check that mu 

of A is equal to summation mu of Ai, i equal to 1 to infinity whenever Ais are contained 

in X and Ai intersection Aj is empty. That says that this set function mu that we have 

defined is countably additive (Refer Slide Time: 13:55). This is what is called a discrete 

measure because it is given by a sequence and pi is called the mass at the point xi. 
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As we observed, mu of the singleton xi is equal to pi for every i and mu of the whole 

space is equal to summation mu of the singletons is pi; mu of X is equal to summation of 

pis. The obvious consequence of this is that mu of X is finite whenever this series is 

convergent. One says this discrete measure mu is finite; that is, mu of X is less than 

infinity; mu of the whole space is finite if and only if summation mu of pis is less than 

infinity. If this summation of pis – the series pi is convergent and its sum is equal to 1, 

then this measure mu is called a discrete probability distribution on the set X which is x1, 

x2, up to xn

(Refer Slide Time: 15:15) 

. 

 



This is a very special case which plays an important role in the theory of probability and 

so on. X is the set of the numbers 0, 1, 2 and so on. Let us fix any number p which is 

between 0 and 1 and define pk to be equal to n ((.)) k (this is the binomial coefficient n 

((.)) k) p to the power k into 1 minus p raised to the power n minus k, k between 0 and n. 

This is called the binomial distribution because of this binomial coefficient appearing in 

the definition of pk

It is quite easy to check that the summation of these p

. 

ks is equal to 1. That is because 

summation of these pks is summation k equal to 0 to n and this side is nothing but p plus 

1 minus p raised to power n and that is equal to 1. This is a distribution which plays a 

very important role in probability; this is a probability distribution. Supposing you have 

got a coin and you are tossing a coin with probability p for head appearing, then this pk

Another special case of this discrete distribution is called the Poisson distribution which 

is characterized by the definition that p

 

represents the probability that in n tosses you will get k heads. 

k is equal to lambda to the power k into e raised to 

the power minus lambda divided by k factorial. This is called Poisson distribution; this is 

another important distribution in the theory of probability. Finally, when we take only a 

finite number of points 0, 1 up to n and pk

(Refer Slide Time: 17:32) 

 is 1 over k and each point is given the same 

mass 1 over k, then this is called the uniform distribution. There are special cases of 

discrete probability distributions. 

 



Next, we give an important example of a measure which is defined on the collection of 

all intervals in the real line. To do that, let us fix our notations. We will denote by I the 

collection of all intervals on the real line. For an interval I with end points a and b (the 

left end point being a and the right end point being b), we will write it as I of a comma b; 

a will denote the left end point and b will denote the right end point. 

We are not saying that this is an open interval a comma b; we are just saying that it is an 

interval with left end point a and right end point b where the left or the right may or may 

not be or both may or may not be included in that interval. It is just an interval with end 

points a and b; the left end point is a and the right end point is b. On this collection of all 

intervals, we are going to define a function.  

For example, recall that the open interval a comma a is the empty set (Refer Slide Time: 

18:24). In the interval 0 to plus infinity, the square brackets indicate that we are 

including 0 and we are including plus infinity. This is a closed interval in R star, x 

belongs to R star – the extended real numbers, x bigger than or equal to 0; this is same as 

the open interval, closed on the left 0 and open on the right infinity in the real line, union 

the special symbol plus infinity that we had added in the extended real numbers. 

(Refer Slide Time: 18:57) 

 

With these notations, we define what is called the length function on the class of 

intervals. It is a set function lambda defined on I taking values in 0 to infinity and is 

defined by take any interval I with left end point a and right end point b. We define it as 



the absolute value of b minus a if a and b are both real numbers. That means if the 

interval I is a finite interval with end points a and b, then its length is defined as b minus 

a and we define it equal to plus infinity in case either the left end point a is minus infinity 

or the right end point b is equal to plus infinity or both; length of I for an unbounded 

interval is defined as plus infinity. This function is called a length function on the class 

of all intervals. This length function is going to play an important role in our subject; let 

us study its properties. 

(Refer Slide Time: 20:08) 

 

Next, we will be studying properties of this length function. The first property is that the 

length function has the property that lambda of the empty set is 0 because empty set is an 

open interval with left end point, say, a and right end point a; it is an open interval a 

comma a which is the empty set; by the very definition, that is equal to a minus a which 

is equal to 0. Next, let us check that this is a monotone set function, namely, length of I is 

less than or equal to length of J if I is a subset of J. 
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We want to check that whenever we have got intervals I comma J and I is a subset of J, 

this should imply that length of I is less than or equal to length of J. Since the intervals 

are characterized by the end points… Case I: let us say I is infinite, say I is equal to 

minus infinity to a. Since I is a subset of J, obviously J has to start with minus infinity 

and can go up to some point c where c is bigger than or equal to a. Essentially, what we 

are saying is if this is a and on this side all of it is the interval I and if J is to contain I, 

then J must be ending somewhere here – that is c (Refer Slide Time: 22:01). Clearly, 

both are infinite and so length of I is equal to plus infinity is length of J; that case is 

obvious. 



(Refer Slide Time: 22:15) 

 

Let us look at the next case. I is a subset of J; J is infinite; whether I is infinite or not 

does not matter because the length of I is always less than or equal to plus infinity which 

is equal to length of J. J being infinite, its length is always going to be plus infinity and 

so this is obvious if this is the case. Finally, let us look at the case when both I and J are 

finite. Let us say I has got the end points a and b.  

Now, I is subset of J and that means the end points of J have to be somewhere here and 

here (Refer Slide Time: 23:04). If I is with end points a, b and J is with end point c, d, 

then we should have c is less than or equal to a less than or equal to b is less than or 

equal to d. This implies this (Refer Slide Time: 23:21). That is same as saying that d 

minus c is bigger than or equal to b minus a and that is saying that the length of J is 

bigger than or equal to length of I. The monotone property is checked (Refer Slide Time: 

23:40). The length function lambda is a monotone property; if I is a subset of J whenever 

an interval I is contained in another interval J, the length of I is less than or equal to 

length of J.  
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Next, let us look at another property; it is called the finite additivity property. What 

should be finite additivity property? Whenever an interval I is a disjoint union of some 

other intervals, then the length of I should be summation of length of Js. What we are 

saying is that if an interval I is written as a finite union of intervals Jis, i equal to 1 to n 

where these Jis are pairwise disjoint, then we want length of I to be equal to summation 

length of Ji

(Refer Slide Time: 24:40) 

s; that is going to be called finite additivity property. 

 



Let us check the finite additivity property. If I is equal to union of Jis where all are 

intervals where Ji intersection Jk is empty, then that should imply that length of I is equal 

to summation length of Jis, i equal to 1 to n. Let us assume that if I is infinite and I is 

equal to union of Jis 1 to n, then that implies at least one of Ji

So, I infinite implies I equal to union of J

s is infinite because if all of 

them are finite intervals, their union will be again a finite interval. 

is implies at least one of these Jis has to be 

infinite (Refer Slide Time: 25:47). That implies lambda of I is equal to plus infinity is 

equal to summation lambda of Ji

(Refer Slide Time: 26:09) 

s, i equal to 1 to n because one of them is plus infinity. 

So the case when I is infinite is okay. Let us look at the case when I is finite. 

 

I is finite. I is equal to union of Jis and Ji

Now, I is equal to union of J

s are pairwise disjoint. Now, let us say the 

interval I has got end points a and b; let us say the left end point is a and the right 

endpoint is b; here is a and here is b (Refer Slide Time: 26:39). We want to compute the 

length of I. Note: the length of I is same as the length of the closed interval a comma b. I 

can include the end points in the interval I because the length depends only on the values 

of the end points; it does not matter whether the end points are inside or not. What we are 

saying is: without loss of generality, let I be equal to a comma b. This is the interval a 

comma b (Refer Slide Time: 27:18).  

is. The point a belongs to this union (Refer Slide Time: 

27:29) and so it should belong to one of the intervals Jis. It belongs to one of the interval 



Jis and actually it has to be end point of one of the intervals of Jis because the interval 

cannot start somewhere else. Sorry, the interval J1 is starting at a and ending somewhere 

let us call it as b1

The first interval I

; the end point may or may not be included. 

1 we can assume it starts here and ends somewhere here; that is, b1 

(Refer Slide Time: 28:15). Now, the point b1 is again in that union (Refer Slide Time: 

28:20). So, either it is already included in the interval I1 or it should be an end point of 

another interval in the union J1, J2 up to Jns. The second one must start here and end 

somewhere here; that is, b2 (Refer Slide Time: 28:38). What we are saying is I2 – some 

other interval; you can rename it as I2; it should start somewhere again at b1 and end 

somewhere here and so on. Here will be the last one an and that should be bn. What we 

are saying is this is going this way; we can arrange the end points of J1, J2 and Jn such 

that such that a is same as a1 less than or equal to b1 is equal to a2 less than or equal to b2 

and so on; so, an less than or equal to bn

(Refer Slide Time: 29:58) 

 which is equal to b. You can rearrange the end 

points of these intervals because this is a union and that is a disjoint union (Refer Slide 

Time: 29:51); this is what is possible for us to arrange. 

 

That clearly says that b minus a is equal to bn minus a1; that is equal to summation bi 

minus ai, i equal to 1 to n, adding and subtracting these terms in between; that is same as 

i equal to 1 to n lambda of Ji. Whenever i is a finite interval, i is equal to union of Jis 

(they are pairwise disjoint), we have got that the length of this b minis a is the length of 



the interval I is equal to summation length of Jis. That means that the length function 

lambda is finitely additive (Refer Slide Time: 30:42). This is the property of lambda – 

the length function being finitely additive; if an interval I is a finite union of pairwise 

disjoint intervals, then length of the interval I is equal to summation length of Ji

(Refer Slide Time: 30:59) 

s. 

 

Next, let us look at another property. Supposing I is a finite interval such that I is 

contained in union 1 to n Iis where a finite union of the intervals…, we are no longer 

saying that they are disjoint, then the claim is that length of I must be less than or equal 

to summation length of these intervals Iis. If you drop the condition that these are 

pairwise disjoint, we are saying if an interval I is covered by a finite union of intervals, 

then the length of I must be less than or equal to summation of length of these intervals 

Iis. Let us look at the proof of this. The proof of this is once again similar to the earlier 

properties. 



(Refer Slide Time: 31:52) 

 

We are saying I is contained in union of Iis, i equal to 1 to n. Obviously, if one of Ii is 

infinite, clearly this implies length of I is less than or equal to summation length of Iis; 

that is obvious because one of these terms on the right-hand side in the summation is 

plus infinity which is always greater than or equal to length of I, whatever be I. Let us 

suppose so that each Ii

As before, without loss of generality, we assume that I is equal to a comma b; here is 

once again the same picture; here is a and here is b (Refer Slide Time: 33:13). The point 

a belongs to the interval I; this is my interval I and a belongs to I; that means it belongs 

to this union (Refer Slide Time: 33:24). It will belong to at least one of the intervals I

 is finite. This is a finite union (Refer Slide Time: 32:45) and that 

implies I is finite.  

is. 

Let us name any one of them which contains the point a to be I1 and let us say the end 

points of that are a1 and b1. The point a belongs to one of the intervals Iis because it is in 

the union and so it will belong to one of them, say I1; let us say the end points of I1 are 

a1 and b1. Here is the end point a1 and here is the end point b1. Now the possibility is 

this b1 is on the right side of b; one possibility is it is on the right side of b. 



(Refer Slide Time: 34:13) 

 

Let us write either b1 is bigger than or equal to b; that means my picture looks like this; 

here is a1, here is a, here is b and here is b1 (Refer Slide Time: 34:28). Then, length of I 

which is equal to b minus a is less than or equal to b1 minus a1, which is equal to length 

of I1 and is obviously less than or equal to summation length of Iis, i equal to 1 to n. In 

case b1

(Refer Slide Time: 34:59) 

 is on the right side, we are obviously through by this case (Refer Slide Time: 

34:54). 

 



What is the other possibility? Case two. This is the picture (Refer Slide Time: 35:06). 

We have got a, we have got b, here is a1 and b1 is not on the right side but on the left 

side of b; let us take that as the picture. In that case, the point b1 belongs to that union. b1 

is in the interval a, b and so it will belong to that union. b1 belongs to I and so it belongs 

to the union (Refer Slide Time: 35:33). It will belong to one of the intervals in the Iis. 

Let us call that as some interval I2

b

.  

1 belongs to I2; that means a2 must start here and b2 will either be somewhere here or it 

will be on the right side. If it is on the right side of it, that means what? Let us say I is on 

the right side; here is b2; instead of here, let us say b2 is here (Refer Slide Time: 36:04). 

Then, the length of the interval I which is equal to b minus a is less than or equal to b2 

minus a1 which is less than or equal to b2 minus a2 plus b1 minus a1. So, b2 minus a1 is 

less than or equal to b2 minus a2 plus b1 (we are adding something bigger) and then a1

(Refer Slide Time: 36:52) 

. 

 

In that case, length of I will be less than or equal to length of I1 plus length of I2; that is 

anyway less than or equal to summation length of Iis, i equal to 1 to n. If you go on 

repeating this process, what does that mean? What is the other possibility? b1 is inside; 

that means here is a and here is b (Refer Slide Time: 37:21). If it is not outside, then it 

must be inside; that means here is a1; here was our b1; here is a and somewhere here is 

b2; it is not on the right side; it is on the left side (Refer Slide Time: 37:34). 



Once again, b2 belongs… and then we can proceed in the same way. At some stage we 

will be through; if not, then we will have a1 is less than equal to a is less than or equal to 

a2 less than or equal to b1 less than or equal to b2 less than or equal to so on less than or 

equal to an less than or equal to b less than or equal to bn

In that case again, lambda of I which is equal to b minus a, here is a and here is b (Refer 

Slide Time: 38:23), is less than or equal to same idea b

. What we are saying is either 

will be through at some finite stage or we can rearrange eventually after n stages the end 

points in that way. 

n minus a1; go on adding and 

subtracting; it is less than or equal to bn minus an plus bn minus 1 minus a n minus 1 and so on 

plus b1 minus a1; that is equal to sigma lambda of Ij, j equal to 1 to n. Whenever we are 

in a finite stage, the end points can be rearranged nicely and we get this property; the 

length function is having the property that whenever a interval I is covered by a finite 

union of intervals, then the length of I is less than or equal to summation length of Ii

(Refer Slide Time: 39:19) 

s 

(Refer Slide Time: 39:18). 

 

Let us look at an extension of this property. Supposing I is a finite interval such that I is 

covered by a union of intervals Iis 1 to infinity, that means the interval I is covered by a 

countable union of intervals Iis; then again, the claim is length of I is less than or equal to 

summation length of Iis. Let us prove this property. Keep in mind that here we are 

assuming our interval I is a finite interval. 



(Refer Slide Time: 39:57) 

 

Interval I is contained in union of intervals Iis, i equal to 1 to infinity; these are intervals; 

I is finite. This implies length of I is less than or equal to summation length of Iis, i equal 

to 1 to infinity; this is what we want to prove. Obvious case: if any one of the terms on 

this side – lambda of Ii – is infinite, then we are through. Note: if Ii is infinite for some I, 

then what will happen? Length of Ii will be equal to plus infinity which is bigger than or 

equal to length of I, whatever it may be – whether finite or infinite. It implies sigma 

length of Ij, j equal to 1 to infinity is also bigger than or equal to lambda because one of 

them is infinite; that case is obvious. Let us assume that not only is I finite but all the 

intervals Iis are also finite; we want to check this property (Refer Slide Time: 41:16). 



(Refer Slide Time: 41:19) 

 

What we want to check is the following. I is finite with end points a and b’ we can 

assume it is a closed interval because the length of I is not going to change. Each Ij is 

finite with left end point aj and right end point bj. We are not saying that we are 

assuming these Ijs are open or closed or anything’ we are just naming the end points. We 

are saying I looks like this – a and b; each Ij is aj, bj (Refer Slide Time: 42:17). We are 

not saying that these end points are included. We are given that I which is a comma b is 

contained in union of Ij

If this was finite, then we already know how to manipulate that; that we have already 

done earlier in the previous case. The idea is: from that infinite union, bring it to a finite 

union. Here is a closed bounded interval contained in an infinite union and we want to 

say this is going to be contained in a finite union. Somewhere, the compactness property 

of the interval a to b is going to be used, but for that we need the intervals to be open.  

, j equal to 1 to infinity. 

Let us make these intervals Ijs open but, of course, the lengths will change. Let epsilon 

greater than 0 be fixed. Select an open interval, say, we call it as Jj such that this Jj 

includes our interval Ij and does not change the length much. Length of this Jj is equal to 

say length of Ii plus epsilon; so, slightly increase. What we are saying in this picture is 

take an interval from here to here the open interval from here to here (Refer Slide Time: 

44:05); call that as Jj. Each Ij which was from aj to here (bj) is enclosed in an open 

interval slightly bigger but the length portion that you had is at the most equal to epsilon. 
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Now, what happens is the following. a, b is contained in the union of Ijs; each Ij is 

contained in the union of Jjs; each Jj is an open interval; we had taken an open interval 

(Refer Slide Time: 44:55). We have got an open cover of the closed bounded interval a, 

b. Heine–Borel property of the real line which says that whenever a closed bounded 

interval is covered by a collection of open intervals implies there exist some n such that a 

finite number of them will cover it; so a, b will be contained in union of j equal to 1 to n 

Jj

This implies by our earlier case that length of I, this was my interval I (Refer Slide Time: 

44:46), is less than or equal to sigma length of J

s; a finite number of them will cover it. 

js, 1 to n. Each one of them is less than 

or equal to sigma j equal to 1 to n length of Ij plus epsilon. Now, we want to separate out 

this summation and let it go to infinity ((.)) to infinity but the problem will come because 

of the summation epsilon added n times. That summation will tend to become very very 

large; we do not want that to happen. What we do is we revise our construction. 



(Refer Slide Time: 46:37) 

 

For a given epsilon, select an open interval Jj says that this holds. So, instead of epsilon 

for the interval Ij, let us divide it by 2 to the power j. Instead of having this extra length 

to be equal to same length as epsilon for every interval Ij, for Ij

(Refer Slide Time: 47:07) 

 we want this extra length 

to be equal to epsilon by 2 to the power j (Refer Slide Time: 47:04).  

 



 

Once we do that, we are in a better shape because now this ((.)) will be 2 to the power j. 

That means it is less than or equal to summation j equal to I can put it 1 to infinity 

because this is less than or equal to lambda of Ij

What we are saying is length of I is less than or equal to summation length of I

 plus summation epsilon by 2 to the 

power j, j equal to 1 to infinity. Now, this series is convergent because it is a geometric 

series with common ratio 1 by 2, which is less than 1. This term is equal to epsilon 

(Refer Slide Time: 47:42).  

js plus a 

number epsilon but epsilon was arbitrary. Let epsilon go to 0. We will get length of I is 

less than or equal to summation length of Ijs. What we are saying is that the countable 

property that we looked at namely length of I is less than or equal to summation length of 

Iis whenever an interval I which is finite is covered by any countable union, then the 

length of I is less than or equal to length of Iis. We have extended that earlier property; 

whenever a finite covering is there, we have extended it to a countable infinite covering 

but only for finite intervals. We would like to extend this to even arbitrary intervals 

which are not necessarily finite. 



(Refer Slide Time: 48:50) 

 

For that, we will have to do a little bit of more work. Let us look at the next property 

which says the following. Let I be a finite interval such that I is equal to union 1 to 

infinity In where Ins are pairwise disjoint. Then, at least we can conclude that the length 

of I is equal to summation length of Ins. Whenever a finite interval is a countable union 

of pairwise disjoint intervals, then the length of I is equal to summation length of In

(Refer Slide Time: 49:32) 

s. Let 

us prove this property. 

 



What we have got is I is equal to union of Ijs, j equal to 1 to infinity; Ijs are pairwise 

disjoint; I is finite implies length of I is equal to summation length of Ijs. Note that we 

have already proved, just now, that if an interval is written as this – a union of countable 

disjoint union, the length of I (we have just now shown) is less than or equal to length of 

Ijs added up, j equal to 1 to infinity; call it (1). Length of I is less than or equal to this 

(Refer Slide Time: 50:26); this we proved just now for finite intervals. We need only to 

show that length of I is bigger than or equal to summation j equal to 1 to infinity length 

of Ij

(Refer Slide Time: 50:51) 

; only this is to be shown. 

 

Here is the interval a to b. I is finite; here is the finite interval I. I1 is a subset of I; it 

should be somewhere inside; somewhere is a1 and somewhere is b1 (Refer Slide Time: 

51:12). Similarly, I2 is also inside I; somewhere it has to be; either it has to be a2 here 

and b2 here or it could be here somewhere and so on. For every n, let us consider the end 

points an, bn of Ins. We can arrange them, there are only finitely many of them, such that 

here is a, here is a1, here is b1, here is a2, here is b2 and so on and here is an and here is 

bn and here is b. 



(Refer Slide Time: 52:24) 

 

That means we can arrange them in such a way that a is less than or equal to a1 less than 

or equal to b1 which is less than or equal to a2 less than or equal to b2 and so on less than 

or equal to an less than or equal to bn which is less than or equal to b. This implies by 

simple algebra that length of I is equal to b minus a. This is b and this is a and I am going 

to make it shorter bn and a1; this is bigger than or equal to bn minus a1 which is bigger 

than or equal to bn minus an plus bn minus 1 (the next one here) minus an minus 1 and so on 

plus b1 minus a1

This put together is nothing but equal to sigma i equal to 1 to n length of I

.  

i. What we are 

saying is for every n, the end points of the intervals I1, I2 up to In

The other way around inequality is also proved. That means we have proved that 

whenever I is a finite interval which is written as a countable union of pairwise disjoint 

intervals, then length of I is equal to sigma length of I

 can be rearranged in 

this fashion. Hence by looking at the ordering of this, the length of I is bigger than this 

(Refer Slide Time: 53:42). This happens for every n; that implies length of I is bigger 

than or equal to sigma I equal to 1 to infinity because this is happening for every n, I can 

let it go to infinity, length of I. 

ns (Refer Slide Time: 54:04). With 

that, we prove an important property of the length function for finite intervals. We will 

continue our study of the length function in the next lecture. Thank you. 


