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Modes of Convergence 

Welcome to lecture 39 on Measure and Integration. Today, we will be looking at a 

special topic which is called various modes of convergence for measurable functions. So, 

the topic for today’s discussion is modes of convergence. 
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Let us recall some of the ways of convergence that you might have already looked into 

earlier courses. So, let us take a sequence of functions f n, it is a sequence of functions on 

measurable space X S. Now, saying that f n converges to f point wise, it means that f n x 

is same as saying that f n x converges to f of x; these are numbers for every x belonging 

to X, this is converging point wise. You might have already come across something 

called f n converges to f uniformly, so what is the difference between this point wise 

convergence and uniform convergence? Let us just write down in terms of our definition 

of epsilon delta. 

Point wise means for every x, for every epsilon bigger than 0 there is n naught which 

will depend upon the point x and epsilon such that f n x minus f of x is less than epsilon 

for every n bigger than n naught. So that essentially means that the numbers f n x 

converges to the number f of x as n goes to infinity, so the given epsilon is bigger than 0. 

There is a stage after which f n x is close to f of x of course, this stage may depend upon 

the point x and the number epsilon. 
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Let us look at what is point wise convergence, by saying that f n converges to f 

uniformly; that means for every x, for every epsilon is bigger than 0 there is the stage n 

naught which does not depend on x which depends only on epsilon such that f n x 

converges to f of x; that is, mod f n x minus f of x is less than epsilon for every n bigger 

than n naught and the same stage works for every x. You must have already seen that the 

uniform convergence implies point wise convergence and the converse need not be true. 

So the uniform convergence implies point wise convergence; the converse need not be 

true that you must have seen in your earlier courses in analysis, but we are going to look 

at today is the functions which are defined not only on measure spaces; that is, actually 

they are defined on measure spaces not only on measurable spaces. So, we are going to 

look at a sequence f n of measurable functions on a measure space X S mu. We had 

already looked at some concept called convergence almost everywhere. 
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Let us define formally again that f n converges to f almost everywhere if everything is 

defined on a measure space X S mu; these are functions defined on the measure space X 

S mu. We say f n converges to f almost everywhere, if the set N all x belonging to X 

such that f n x does not converge to f of x. If that is a set N then, we want to N should 

belong to sigma algebra S and mu of N should be equal to 0, so that is convergence 

almost everywhere. 

Obviously, point wise convergence implies convergence almost everywhere. Obvious 

examples one can construct to show that this other way implication need not hold; 

convergence almost everywhere need not imply point wise convergence. 
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Now, let us try to look at a relation between convergences almost everywhere. Just recall 

once again what we are saying? We are saying f n convergence to f point wise, if the 

sequence of numbers f n x converges to f of x. That is same as saying that for every 

epsilon bigger than 0, there exists n naught such that it may depend upon the point x. The 

number epsilon is such that absolute value of f n x minus f of x is less than epsilon for 

every n bigger than n naught. 
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So, the numbers f n x converging - the sequence f n x is converging to f of x. By saying f 

n converges almost everywhere to f means that the set of points where f n x does not 

converge to f of x that set is a set of measure 0, so that is convergence almost 

everywhere. Saying that the f n converges uniformly to f that means, for every epsilon 

there is a stage n naught which depends only on epsilon n naught on the point x such that 

for every x the distance between f n x and f of x is less than epsilon for every n bigger 

than or equal to n naught. That stages works for every x, so that is important thing for 

uniform convergence. 
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Instead of writing in English all the time whenever f n converges to a point wise, we will 

write f n arrow with the p above indicating it is a point wise converges, f n converges to f 

point wise. Convergence almost everywhere will be indicated by f n an arrow pointing 

right side to f with a symbol a dot e dot saying almost everywhere to f, but this is also 

written as f n converges to f, f n right arrow f, a e indicating and this converges is almost 

everywhere. 

Similarly for uniform convergence, we will denote it by symbols f n arrow by pointing 

towards the right and u above the arrow indicating that it is uniform convergence. 
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So as I pointed out earlier that f n converges to f, uniformly implies that f n converges to 

f point wise and that implies f n converges to f almost everywhere. None of the backward 

implications is true, so one can easily construct counter examples. We show that 

convergence almost everywhere need not imply convergence point wise and point wise 

convergence need not imply convergence which is uniform. 
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However, we would like to still analyze whether some conclusions can be drawn from 

the point wise convergence or almost everywhere convergence in terms of uniform 



convergence. To analyze, let us assume that f n converges to f almost everywhere.  Let 

us take a set E which is in the sigma algebra S such that the measure of this sigma set E 

is finite and let us be given with two numbers epsilon and delta arbitrary. 

Then, we would like to show that there exist a set E lower epsilon - a measurable set E 

lower epsilon of S and a positive integer n naught which will depend upon epsilon and 

delta such that with the following properties namely, that E epsilon is a subset of E and 

the difference E minus E epsilon is small. For every x belonging to E epsilon, on E 

epsilon f n x minus f of x is less than delta for every n bigger than or equal to n naught. 

That means, for every x the same stage n naught works, so essentially saying that the 

difference between f n and f stays less than delta for all n bigger than n naught and the 

stage will not depend on epsilon. 
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So let us prove this result. To prove this, we are given that f n converges to f almost 

everywhere. That means, if we define the set N to be the set of all x belonging to X such 

that f n x does not converge to f of x then, this set the mu of the set N is equal to 0, so 

that is what is given to us. Now, let us look at the set that means, on N complement on 

the complement of this set f n x converges to f of x for every x belonging to N 

complement. 



Let us write the set E say m, we are also given delta, so let us write E m delta to be the 

set of all points x belonging to X such that f n x such that the difference f n x minus f of 

x f n x minus the difference f n of x is less than delta for every n bigger than or equal to 

m. Let us look at this set E m delta, this set depends on m and on delta, so the difference 

between f n and f is less than delta for every n bigger than or equal to m. 

Let us note that these sets E m delta they belong to the sigma algebra. If the difference 

between f n and f m f n and f x is less than delta for all n bigger than m then, that is also 

going to be true for all n bigger than n plus one. 
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That means, the E m delta is an increasing sequence. So, E m delta is a subset of E m 

plus one delta further, not only it is increasing because we are given that f n x converges 

to f of x for every x, So that means the sequence is increasing and on n complement was 

that know the difference is so the sequence is increasing sequence and we can say that n 

complement is contained in union of E m delta m equal to 1 to infinity, because on n 

complement it converges. So for every x, we can find some stage after which it will be 

less than for a given delta. 
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So, the fact that on n complement f n x converges to f of x that implies that the set n 

complement is a subset of the union of E m delta. 
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Thus, if you look at the sequence E intersection E m complement delta then, this is a 

decreasing sequence; it is a decreasing sequence of sets and mu of E being finite implies 

that limit n going to infinity mu of E intersection E m complement delta. It must be equal 

to this, because E m was increasing sequence and the complements will be decreasing 

sequence, so it must converge to intersection of all of them and that is contained in the 



complement the e intersection and complement that is equal to 0, because this sequence 

of sets decreases to E intersection n complement, so that is equal to 0. 
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So what does that imply? Saying that this converges to 0 that implies that given there is 

the stage. Let us find some E m m naught such that mu of E intersection E complement 

m is m naught is less than epsilon. On E intersection E m naught complement, we know 

that f n x minus f of x is less than delta for every n greater than or equal to m naught. 

So with the given epsilon delta and mu of E finite, we have found a stage m naught and a 

set E m naught such that E intersection is nothing but E minus the set that is less than 

epsilon and on the set E intersection the difference between f n and f is less than delta 

(Refer Slide Time: 16:05). 

So that proves the required claim namely, if f n converges to f almost everywhere and we 

are given a set E of positive finite measure - mu of E is finite then, for every epsilon and 

delta we can find a subset E epsilon inside E such that the measure of on E epsilon f n x 

minus f x is less than delta for every n greater than the stage n naught and the measure of 

the difference E minus E epsilon is small. 
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So, this is consequence of the f n converges to f almost everywhere and mu of E has got 

finite measure. As a consequence of this, we prove theorem called Egoroff’s theorem; it 

says that if f n converges to f almost everywhere and E is a set of finite measure then for 

given epsilon, there is a set E epsilon such that measure of the set E minus E epsilon is 

less than epsilon and f n converges to f uniformly on E epsilon. 
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We are given that f n converges to f almost everywhere and mu of E is given to be 

infinite. So by the result, it just now proved for every delta equal to 1 over n; let us apply 



the previous result for epsilon equal to delta equal to 1 over n there exists a set E n 

contained in E such that mu of E minus E n is less than 1 over n. On E n on the set let us 

write E m here just for the sake of clarity, because we are going to apply it for every n. 

For every E m there is a set and a stage n m such that f n of x minus f of x is less than 1 

over m for every n greater than that stage n m. 

By the result, we have proved that whenever f n converges to f almost everywhere and E 

is a set of finite measure then with delta equal to 1 over n, sorry, this is less than there is 

a set E m with that this is less than epsilon; for every epsilon, let us do it for epsilon two 

to the power m (Refer Slide Time: 19:17). 

So, we are applying the previous result with delta equal to 1 over m by replacing epsilon 

by epsilon divided by 2 to the power m. We will say that is set, so that the difference 

between E and E m is less than epsilon by 2 to the power m and on the set E m the 

difference f n minus f x is less than 1 over m for every n bigger than or equal to E m. 
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Let us define the set E epsilon equal to intersection of E m, m equal to 1 to infinity. With 

that let us compute that this is the required set. So mu of E minus E epsilon is equal to 

mu of union of E minus E m, m equal to 1 to infinity, because E epsilon is intersection, 

so minus that will make it union, which is less than or equal to sigma m equal to 1 to 

infinity mu of measure of E minus E m which is less than epsilon by 2 m; so which is 



less than or equal to m equal to 1 to infinity of epsilon by 2 to the power m which is less 

than or equal to epsilon. 

So, we get that measure of the set E minus E epsilon is less than epsilon. Also if we look 

at x belongs to E epsilon that is equal to intersection of E m, m equal to 1 to infinity. 
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What does that imply; that means, because it belongs to intersection it implies that x 

belongs to E m for every m; mod of f n x minus f of x will be because it belongs to E m 

for every m it is less than 1 over m for every n bigger than or equal to n m. So that means 

for every m we can find a stage after which the difference f n x minus f x is less than 1 

over m for every x; so that implies that f n converges to f uniformly on E epsilon that 

converges to E epsilon uniformly. 

So, this proves Egoroff’s theorem namely, which says that if f n converges to f almost 

everywhere then with given any set E of finite measure, we can find a part of it. So that 

on the part of that set E f n converges to f uniformly and the measure of the remaining 

that is E minus E epsilon is small is less than epsilon. So for every epsilon we can find a 

set E epsilon contained in E such that mu of E minus E epsilon is less than epsilon and 

on E epsilon f n converges f uniformly, so this is what is called Egoroff’s theorem. 
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So as a particular case of Egoroff’s theorem; let us define and make new definition for 

measurable functions f n and f, and a set E in the sigma algebra. One says, f n converges 

almost uniformly to f on E if for every epsilon there is a set E epsilon belonging to the 

sigma algebra such that the measure of the difference E minus E epsilon is small. On E 

epsilon f converges a uniformly, such convergence is called almost uniform convergence 

essentially, saying it is uniform except on a set of measure small that is what almost 

uniform is to be understood. 
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So, Egoroff’s theorem can be restated as if f n converges to f almost everywhere on a set 

E of finite measure  then, f n converges to f almost uniformly on E. So almost 

everywhere convergence implies almost uniform convergence on every set of finite 

positive measure. In particular case, when mu of x is finite this will imply f n converges 

to f almost everywhere on the set x, so this will imply that f n converges to f almost 

uniformly on x. 

On finite measure spaces almost everywhere convergence implies convergence which is 

almost uniform. In fact converse of this proposition is also true when we have got the 

measure space finite. So, the converse says that if mu of x is finite and f n converges to f 

almost uniformly on x then f n converges to f almost everywhere. 
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So, the proof of that is almost obvious because by the given hypothesis for every integer 

n, we can find a set f n in S in the sigma algebra such that the measure of the set f n is 

small and f n converges to f uniformly on the complement of it. Let us define the set F 

which is intersection of all this F n’s then measure of the set f is less than or equal to 

measure of each f n which is less than 1 over n. 

The set f is a set of measure 0. Outside this if f if a point x belongs to f complement then 

that mean it belongs to some f n complement for some n and on that convergence is 

uniform, so f n converges to f in particular. That will imply that on f complement f n x 



converges to f of x, so that proves the converse part of the Egoroff’s theorem for finite 

measure spaces. 
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Let us draw a picture and try to see what this implication mean. We have got 

convergences; one is convergence point wise, so this is point wise convergence. We have 

got convergence almost everywhere, convergence which is uniform and convergence 

which is almost uniform. 

We know that the point wise convergence implies convergence which is almost 

everywhere. Convergence uniform implies which is point wise convergence. So 

convergence uniform implies convergence point wise and point wise implies almost 

everywhere. The other way around inequality is this is not true and this implication is 

also not true in general (Refer Slide Time: 26:15). 

We just now showed that convergence almost everywhere obviously does not imply this 

convergence. Convergence uniform obviously implies convergence almost uniform, 

because almost uniform means outside a set of measure small, so this is uniform implies 

that convergence also almost uniform (Refer Slide Time: 27:20). 

So, almost everywhere convergence or point wise convergence cannot imply this 

because it does not imply this (Refer Slide Time: 28:00). This implication convergence 

almost everywhere obviously does not imply in general this, but what we can say is that 



when it is finite almost this implies this when mu of X is finite and of course, this also 

implies the other way round when this is finite. 
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So this is what one way, almost everywhere implies convergence almost uniform that is 

Egoroff’s theorem and the converse always hold, so these two are same if underlying 

measure spaces is a finite measure space. These are the implications that we can say as 

true. 

Next, let us point out the fact that Egoroff’s theorem says that almost everywhere 

convergence on finite measure spaces gives rise to almost uniform convergence. This can 

be use to prove a important theorem called Luzin’s theorem, which says that if f is a real 

valued function on reals which is measurable and epsilon greater than 0 is arbitrary then, 

there exists a continuous function g such that where f differs from g is a set of measure 

small. 

So, what it says that if every measurable function is almost continuous then, you can 

look at it this way. We will not prove this result. Basically, the idea is on every interval 

one tries to apply Egoroff’s theorem and then try to patch it up. Those who are interested 

should look at the text book, refer for this result by saying that Egoroff’s theorem has an 

application namely every measureable - real valued measurable function on reals is 

almost equal to a continuous function; that means, the set of we can find for given any 



epsilon one can find a continuous function such that the difference f x not equal to g x, it 

is the measure of that set which is small. 

So, these are the relationships between point wise convergence, convergence almost 

everywhere, uniform convergence and almost uniform convergence, but keep in mind 

almost uniform convergence is not uniform almost everywhere, so these two are different 

things. Almost uniform means that except outside a set of measure small the 

convergence is uniform, but if you say uniform almost everywhere that means, outside a 

set of measure 0 the convergence is uniform. So almost uniform is not same as uniform 

almost everywhere, so keep that in mind. 

Next we would like to discover another important mode of convergence called 

convergence in measure. This mode of convergence is very useful in the theory of 

probability analyzing what are called convergence of random variables. We will not be 

go to the probabilistic aspect of this; we will just look at the measure thyroidic aspect of 

what is convergence in measure is. 
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So, a sequence of measurable functions f n is set to converge in measure to a measurable 

function f on a measure space excess mu. If for every epsilon, look at the set, where f n 

minus f x is bigger than or equal to epsilon, this is the kind of set where f n is not going 

to; the difference remains bigger than epsilon. 



So, collect all such points and if we look at the measure of this set, if the measure of this 

set goes to 0 and it becomes smaller and smaller as n goes to infinity, then we say f n 

converges to f in measure. So saying f n convergence to f in measure is for every epsilon, 

this is important for every epsilon bigger than 0. 

Look at the measure of the set where f n minus f is bigger than or equal to epsilon, 

measure of that set limit n going to infinity should be equal to 0; this is called 

convergence in measure for function. This will write as f n with an arrow f and above the 

arrow, we will put the symbol m indicating that f n converges to f in measure. 

(Refer Slide Time: 32:13) 

 

Let us look at some examples to understand convergence in measure, these are the 

almost everywhere convergence. 
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Let us look at the sequence of functions f n which is defined on the Lebesgue measure 

space R that is real line Lebesgue measurable sets and the length function. Let us take the 

function f n to be equal to the indicator function of n to n plus 1. So, what we are doing is 

f n it is the indicator function of the interval n to n plus 1, if this is a line, this is 1, 2, 3, n 

and n+1. 

What is f 1? f 1 is the indicator function of 1 to 2, f 1 is nothing but the function, so this 

is f 1. What is f 2? f 2 is the indicator function from 2 to 3, so this is f 2, this is f 3 and so 

on and this is f n (Refer Slide Time: 32:45). So what is f n? f n is the function, it  nothing 

but the constant function one on the interval n to n plus 1, this graph is shifting as you 

go. 

Clearly, f n x converges to f x for every x and that is obvious because, if we are given a 

point x somewhere, here is a point x then, after some stage we can find n which is bigger 

than this. So we can find something - some n naught which is bigger than this, then f n 

naught of x will be equal to 0 (Refer Slide Time: 33:50). 

That means for every x, we can find a stage n naught so that this is equal to 0; that will 

happen for every n bigger than that; that means, the f n x converges to f of x which is 

identically equal to 0 (Refer Slide Time: 34:15). So, the sequence of functions f n x point 



wise converges to the function f of x which is identically 0, so f n converges to f 

identically 0 point wise. 

Let us look at the measure of the set, where f n minus f is bigger than or equal to say 1, 

because f n gives the value 1 or 0 only. The set where f n x differs from f of x is precisely 

from the interval n to n plus 1. Lebesgue measure of the set where f n x minus f of x is 

bigger than or equal to epsilon equal to 1 is equal to 1 and that never goes to 0. This is 

the sequence of measurable functions which converges point wise, but it does not 

converge measure to the function f identically equal to 0. 
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So, point wise convergence need not imply convergence in measure. Point wise 

convergence - convergence almost everywhere in particular also does not imply 

convergence in measure. 
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Let us look at another example which is easy to describe pictorially. So, what we are 

going to look at is, look at the interval 0, 1 divided into two equal parts that is 0, half and 

1. In the next stage divided into four equal parts 1, 2; that is 0, 1 by 4, half, 3 by 4, 1 and 

so on. 

So define f 1 to be the indicator function of the whole interval 0 to 1; define f 2 to be the 

indicator function of the interval 0 to half, so this is f 2 which is the indicator function of 

0 to half. This is f 3 which is equal to indicator function of half to 1, so that is f 3. 

Similarly, this is f 4, this is f 5, this is f 6, f 7 and so on. So each f n is nothing but the 

indicator function of interval with n points which are obtained by dividing the interval 

into equal parts at every stage (Refer Slide Time: 36:20). 

So, it is a indicator function of a interval I k n, where the length of I k n is equal to 1 over 

2, it is going to depend on which stage? It is something like interval of length 1 over 2 to 

the power n or something like this, because it is going to be shrinking (Refer Slide Time: 

37:12). 

If this is how the sequence f n is obtained then, it is clear that the set on which f n is 1 is 

becoming smaller and smaller. So, guess is this f n converges to f identically 0 in 

measure, but this sequence f n does not converge to f point wise. For that the reason is 

given any point x we can always find some f n like this, where the value of the function f 



n is going to be equal to 1, because of that what is happening is f 1 is the indicator 

function of the whole interval, f 2 it is this (Refer Slide Time: 38:10). 

So, the set over which the function is non 0 is taking the value 1, it is fluctuating but it is 

moving, at that most stage it becomes 0. Actually at every point x there will be some f n 

which will be decreasing the value 1, so this will not converge almost everywhere or 

point wise. This will be an example of a sequence which converges in measure but not 

point wise. 

One can formally write this as follows. To write this more rigorously, let us look at this. 

For every n, first of all choose unique integer m such that n lies between 2 to the power 

m, n 2 to the power m plus 1 that is obvious. That for any n you can find an integer with 

this property (Refer Slide Time: 39:00). 

Next look at an integer k, for any integer k between 0 and 2 to the power m this number 

n can be written as 2 to the power m plus k, because n to n plus 1 can be divided into 

intervals of length 1 over 2 to the power m. Once, you do that you can find a k such that 

this n is equal to 2 to the power m plus k. 

So, what we are saying for every natural number n? It can be expressed uniquely as in 

the form. To every n, you can associate a pair namely, small m comma k where m is such 

that n lies between 2 to the power m less than or equal to and less than 2 to the power m 

plus 1 and k is between 0 and 2 to the power m. This correspondence n with this pairs is 

unique. Obviously, as n goes to infinity, this m will also go to infinity and conversely as 

m goes to infinity, n goes to infinity (Refer Slide Time: 40:06). 
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How the function f n is defined? So define f n for any n, represent it uniquely as k plus 2 

to the power m and take f n to be the indicator function of I k m. This is the interval 

starting at k by 2 to the power m and going to k plus 1 2 to the power m; that means, it is 

a interval of length 1 over 2 to the power m. f n is 1 on this interval and you see that this 

interval is shifting but never becoming smaller and smaller, and never vanishing. 

So, f n is the sequence of some measurable functions because of the indicator functions 

of intervals. For every x we can find a stage; for any n, if n is equal to this we can find a 

stage, so that x will also belong to an interval of the starting with l 0 with base as 2 to the 

power m plus 1. We mean that for every n there is a stage and dash such that f n n dash 

of f n dash at the point x is also equal to 1 (Refer Slide Time: 41:35). 



(Refer Slide Time: 42:04) 

 

So, this will prove that the sequence f n does not converge to the function identically 0 

point wise. On the other hand, it is quite obvious that the set of points where this is 

bigger than epsilon for every epsilon bigger than 1, it is empty set and less than or equal 

to 1, it is the interval which is becoming smaller and smaller. 
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So, it says that this is a sequence of functions that will go to 0. This is a sequence of 

functions which converges in measure, but not point wise. What we have shown is that 

the convergence in measure is neither implied by point wise convergence or convergence 



almost everywhere and neither implies convergence in measure. So, convergence in 

measure and point wise convergence are neither implied nor implied by each other. This 

is the concept of convergence in measure which is quite different from point wise 

convergence. 

However, when the underlying space is with finite measure one can draw some 

conclusions, because in the theory of probability the underlying measure space has got 

total mass 1; so we want to look at this concept of convergence in measure when the 

underlying measure space has got finite measure. 

(Refer Slide Time: 43:36) 

 

We want to prove that if mu of x is finite and f n converges to f almost everywhere then, 

f n converges also in measure to the set f. What we want to show is that convergence for 

finite measure spaces convergence almost everywhere implies convergence in a measure. 
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Let us look at a proof of this fact; recall that saying f n converges in measure to f is same 

as said; this is what we want to show? We want f n converges to f in measure, so what 

we have to show? We have to show that for every epsilon, if we look at the set of those 

points where f n minus f is bigger than or equal to epsilon then, the measure of this set 

goes to 0 as n goes to infinity for every epsilon. 

Let us call this set x belonging to X f n x minus f of x bigger than or equal to epsilon; a 

set,  it depends on epsilon and it depends on n, let us call this set as A n epsilon. So A n 

epsilon is equal to set of points where f n minus f is bigger than or equal to epsilon and 

we want to show that the measure of this set goes to 0 as n goes to infinity. 

Now, let us observe that A n epsilon is obviously a subset of the union of the sets A m 

epsilons from m equal to n, because this is one of the sets in the union. So this is showing 

that mu of A n epsilon goes to 0 is same as enough if we can show that measure of this 

union goes to 0. 
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Look at this unions A m epsilon m bigger than or equal to n, this is a sequence of sets as 

n increases this union is going to become smaller and smaller. This is a sequence of sets 

which is decreasing, so it is a decreasing sequence of sets and it decreases to; where it 

will decrease? It will decrease to the intersection of the sets n equal to 1 to infinity of 

these sets; mu of the set x being finite, this is a sequence of sets which is decreasing to 

this set and mu of x being finite implies mu of the limit is equal to limit of the mu of the 

sets. So, limit n going to infinity mu of this is equal to this. 

(Refer Slide Time: 46:34) 

 



Let us observe that mu of the set which is intersection n equal to 1 to infinity, union m 

equal to 1 to infinity A m epsilon, what is this set? If x belongs to this set that means, for 

every n there is m such that x belongs to A m for some m bigger than or equal to n, 

which is same as the saying. So x does not converge f of x because A m epsilon is the set 

where it is bigger than epsilon. 

What it says? It says that this is a set where f n does not converge to f of x and we are 

given that f n converges to f almost everywhere. So this set has got measure 0, this limit 

is equal to measure 0. So that proves the fact that this is of measure 0 that proves the 

limit of A n epsilon is 0 that means, f n converges to f n measure. 

So, we had started looking at the convergence in measure and we have proved, gave 

examples to illustrate that neither point wise convergence implies convergence in 

measure nor convergence in measure implies point wise convergence. However, when 

the underlying space is finite convergence almost everywhere does imply convergence in 

measure. 

We will continue this study of convergence in measure and also look at its relation with 

what is called convergence in mean or convergence in L P spaces. We will do that in 

next lecture, thank you. 


