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Welcome to lecture number 32 on measure and integration. In the previous few lectures, 

we have been looking at the Lebesgue measure on the space R 2 and its various 

properties. 

In the previous lecture we had started analyzing, how does the Lebesgue measure of a set 

change when we apply a linear transformation to it? 

So, we had started analyzing it. Let us recall what we have done and then, we will 

continue analyzing this problem, and some more properties of Lebesgue measure under 

other transformations. 
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So, let us just recall, what we had done last time was that, we started looking at the 

theorem, namely, if T is a linear transformation from R 2 to R 2 such that, and E is a 

Lebesgue measurable subset, then we wanted to show, that the transformed set T of E, 

the image of E under T is again, a Lebesgue measurable set, and the Lebesgue measure 

of the transformed set is obtained by multiplying the Lebesgue measure of the original 

set with the constant called determinant of E. So, Lebesgue measure of T of E is equal to 

determinant of T times Lebesgue measure of the original set E. 

So, this property, this term gets started analyzing, we had analyzed the proof of this 

theorem. In the 1st case, when T is a singular transformation and there we argued, that if 

T is a singular transformation, then T of E, the image set is going to be a Lebesgue null 

set and for a singular transformation determinant of E, T is also equal to 0. That is how, 

singular transformations are characterized. 

So, in that case, both the terms, the Lebesgue measure of the translated set is equal to 0, 

is same as determinant of T times Lebesgue measure of the original set. 
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In the case when T is a nonsingular transformation, I mean, T is nonsingular. So, 

nonsingular means, T is invertible and here are a few facts about linear algebra, saying 

that T is nonsingular is same as saying as determinant is not equal to 0, and it is 



equivalent to saying, that as a map T is a one-to-one onto map and the inverse of course, 

is also a linear transformation. 

So, in analyzing the proof of that we had already shown that if E is a Borel set, so we 

first restricted ourselves to Borel subsets of R 2. We showed that if E is a Borel set, then 

for every nonsingular linear transformation T of E T, the transformed set T of E also is a 

Borel set. That basically, follows from the fact, that every linear transformation is a 

continuous map and if it is nonsingular, then the inverse also is a continuous map. 

So, essentially saying, that for every Borel set E, T of E is Borel, one analyzes is that 

when E is open set, T of E is an open set and hence, it is a Borel set. And then, one 

shows, that the collection of all sets for which this property is true, namely, the image is 

a Borel set, is a sigma algebra including open sets and hence, one concludes, that for 

every set E, the transformed set, the image set T of E is also a Borel set. 

And we also analyze, that this, if you consider this as a measure for all Borel sets, then it 

is translation invariant because T is linear and that means, by the uniqueness property we 

got, that for every linear transformation T, which is nonsingular, the Lebesgue measure 

of the transformed set, namely, T of E must be a constant multiple of the original 

measure lambda R 2 of E and that constant will depend on the transformation T. So, this 

is the stage we had reached and then we wanted to analyze further, and the claim we 

want to prove is that this C of T is nothing but determinant of T. 

So, this is the stage we had reached. So, let us continue the proof. Let us observe, that 

this map, T to C of T, see for every T, transformation T, we are associating a number C 

of T, which is nonnegative. 
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So, we get a map T going to C of T, so there is a map for every nonsingular 

transformation T, we are associating a number C of T. This association, this map has the 

following properties, namely, if T is a diagonal transformation, then we observed that 

was the beginning of our analysis of this theorem, that C of T is nothing but the 

determinant of T. 

So, for diagonal transformation, C of T is equal to determinant of T. And the 2nd 

property is that if, if, if the linear transformation is an orthogonal transformation, then 

this C of O is equal to 1 is equal to determinant of T and this is because of the fact, that a 

orthogonal transformation on R 2 leaves the set, namely, the unit circle, you can think of 

it as all x in R 2, such that norm of x is less than or equal to 1 invariant. 
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So, let us just look at this property, a slightly more, some of you may not be knowing 

about linear transformations. So, T is a linear transformation from R 2 to R 2 and let us, 

every linear transformation is given by a matrix A, so, which is a 2 by 2 matrix, so it is a, 

b, c and d. 

So, saying that T is orthogonal is same as saying, that if you take A, and look at it as A 

transpose, that is same as, A transpose A, and that is equal to identity. 

So, saying that T is orthogonal is characterized by this property about the matrices, 

matrix of the linear transformation, namely A times A transpose is same as A transpose 

times A, and that is equal to identity and which is also equivalent to the property, that if 

you look at the row vectors and the column vectors, so the row vector is a b and c d. So, 

these 2 vectors are orthogonal, namely their dot product is equal to 0 and each is a unit 

vector, so that is called orthogonal, but we are not going to use this property. 

So, let us look at this property, which says, A A transpose is equal to A transpose A. So, 

this property gives us the following fact, namely, let us look at the dot product. So, let us 

take any vector x belonging to R 2 and look at the dot product of.., So, let us look at the 

image, the image is T of x, so x goes to T of x. 

So, let us look at the dot product. So, norm of T x square, that is given by the dot product 

of T x with itself. So, that is the definition of the magnitude, the dot product in R 2, but 



this dot product can also be written as T times, this T can be written as T transpose T of 

x. 

So, T transpose is same as A transpose basically, so you can think it as matrices and that 

being an identity, so this is same as x comma x. So, orthogonal transformations are also 

characterized by the property, that the norm of the image of any vector is equal to norm 

of the original vector. That is another way of characterizing orthogonal transformations; 

we can take that as the definition of the transformation if you like. 
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Now, from both this properties, that A transpose A is equal to identity, so that implies the 

following fact, that A transpose A equal to identity. This implies, that the determinant of 

A transpose determinant of A is equal to 1 and that implies, determinant of A transpose 

is same as determinant of A. So, that says, determinant of A times determinant of A, so 

this square is equal to 1. So, that implies that the absolute value of determinant of A is 

equal to 1. So, T orthogonal implies that determinant of T absolute value is equal to 1. 

So, that is one fact. Also, the fact, that norm of T x is equal to norm of x implies, that if 

norm of x is less than or equal to 1, so that implies norm of T x is also less than or equal 

to 1. So, that means, if in the plane we look at the unit circle, so this is the set, where 

norm of x is less than or equal to 1. And if we take the transformed set, the transformed 



set is same, so under T this gives back to the same thing. So, norm of T x is equal to 

norm x less than or equal to 1. 

So, that is saying that T leaves, if T is orthogonal, then it leaves the unit circle, the region 

inside the unit circle invariant and that essentially means, that the Lebesgue measure of 

this set is same as the Lebesgue measure of that set. 
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So, that implies, that the Lebesgue measure of the transformed set, so that circle mod x 

less than or equal to 1 is same as the Lebesgue measure of mod x less than or equal to 1. 

And this being equal to determinant of T, this being determinant of T, times, this being 

same as, so this is same as, sorry, this is same as, so that implies, but this can be written 

as determinant of T because that is equal to 1 times Lebesgue measure of norm x less 

than or equal to 1. 

So, this implies, so this is the constant, so C of T, which is determinant of T is equal to. 

So, C of T is 1, which is same as determinant of T. So, that means, for orthogonal 

transformations, so T orthogonal implies C of T is equal to 1. 
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So, that is the 2nd fact that we wanted to prove, namely, if, if O is an orthogonal 

transformation, then the C of O, the constant, this type O here, this should have been 

determinant of O, is, because the unit circle, the region inside unit circle is left invariant 

by the orthogonal transformation. 
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So, now, the next property we want to analyze is that for all nonsingular transformations 

T 1 and T 2, C of (T 1 T 2) is equal to C of T 1 times C of T 2, that means, this map is 

multiplicative. The map T going to C of T is a multiplicative map, namely, if I look 2 



transformations, T 1 and T 2, then C of (T 1 T 2) is same as C of T 1 times C of T 2. So, 

let us look at a proof of that. 
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So, T 1 and T 2 are transformations from R 2 to R 2. So, we are going to look at, so let us 

write T is equal to T 1 T 2.  

Then, we have to compute C of T 2, so we are going to look at the measure mu of T 

which is equal to… So, let us take any set, so let E be any set, which is a Borel set. 

So, let us look at lambda of lambda R 2 of T 1 T 2 apply to E. So, let us look at this, this, 

by definition of the constant C of T is C of (T 1 T 2) because (T 1 T 2) is a linear 

transformation applied. So, this composite (T 1 T 2) is applied to E. 

So, by definition of C of (T 1 T 2), that should be equal to C (T 1 T 2) of Lebesgue 

measure of the set E. On the other hand, we can also think of this as lambda, Lebesgue 

measure of R 2 of T 1 applied to T 2 of E. 

So, this composition (T 1 T 2) is same as saying the linear transformation T 1 is applied 

to the set T 2 of E, but if you do that, then we know, that this is equal to lambda R 2 of, it 

is lambda R 2 of T 1 of a set. So, it is C T 1, so this is equal to C T 1 times lambda R 2 of 

T 2 of E. And now, that once again lambda R 2 of C of T 2 of E gives you C T 2 and the 



original is C T 1 into lambda R 2 of E. So, we get, that C of (T 1 T 2) times the Lebesgue 

measure of any set E is same as, same as C T 2 into C T 1 of Lebesgue measure of E. 

So, this happens for every set E, this implies, so this implies, that C of T 1 composite T 2 

is same as C of T 1 times C of T 2. So, this map is a multiplicative map. So, this is the 

property we wanted to prove. 
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And now, we need another fact from linear algebra, namely, what is called, singular 

value decomposition for linear transformations. 

So, in case we have not come across this theorem called, singular value decomposition 

for linear transformations, please look into the text book, that we have suggested, 

namely, an introduction to measure and integration and look at the appendix of that 

book, you will find a proof of this singular value decomposition for linear 

transformations. 

So, let us take, what is the singular value decomposition? It says that every linear 

transformation T can be represented as a product of 3 transformations, where the 1st one 

P and the last one Q are both orthogonal transformations, P and Q are orthogonal 

transformations and this D is a diagonal transformation. 



So, every linear transformation T can be represented as P times D times Q, where P and 

Q are some orthogonal transformations and D is some diagonal transformation. 

So, this is a theorem called, the singular value decomposition in linear algebra. So, 

please have a look at a proof of this, in case you have not come across this theorem in the 

text book mentioned. 

So, once we know, that for every linear transformation, T can be represented as P times 

D times Q, so and the property 3 just now stated to says, that the constant C of any 

composite is the product. So, we apply that property through this, so we get, C of T will 

be equal to C of P times D times Q, which is nothing but the product. So, the C of a 

transformation T will be C of P into C of D into C of Q. 
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So, we get, that the constant for any linear transformation T is equal to the constant for 

some orthogonal transformation P times the constant for a diagonal transformation D and 

the constant for another orthogonal transformation Q. 

But just now we observed that for orthogonal transformations, the C of orthogonal 

transformation, the constant associated is 1. So, C of P is 1 and C of Q is 1, so that gives 

you C of T is equal to C of D because both first and the last multiplicative things are 1. 

So, it is C of D and for a diagonal transformation we have already shown, this is equal to 

determinant of D. 
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So, for the linear transformation T, the constant C of T is equal to determinant of D, 

where D is the diagonal transformation, which appears in the singular value 

decomposition T is equal to P D Q. But on the other hand, we can also look at the 

determinant of T from this, so determinant of T. 
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Recall, that determinant is also a multiplicative map, so determinant of T will be equal to 

determinant of P into determinant of D into determinant of Q. But determinant of P and 

determinant of Q, both are equal to 1, so that says, determinant of T is equal to 



determinant of D and just now we said, determinant of D is equal to C of T. So, 

combining these 2 we get, determinant of T is equal to determinant of D, sorry, we get 

determinant of, so this should be C of T is determinant of D. So, that says, that C of T 

should be equal to determinant of D. 

So, so, here it should be, this is redundant. So, C of T is determinant of D and 

determinant of D is equal to determinant of T. So, this 2 combine together, gives you C 

of T is equal to determinant of T. 

So, that completes the proof of the fact, that for a linear transformation; so, we have 

completed the proof, that for a linear transformation, if you take the set E and change it, 

transform it by a linear transformation, that is same as determinant of T times the 

Lebesgue measure of E. So, the Lebesgue measure of the transformed set is determinant 

of T times the Lebesgue measure of the set E. 

So, that proves the theorem for all sets, which are Borel measurable sets. So, till now, we 

have proved the theorem only for Borel measurable sets. We would like to extend this 

theorem for Lebesgue measurable sets. So, for that let us observe the following, how are 

the Lebesgue measurable sets in R 2 obtained from Lebesgue, from Borel measurable 

sets? What is the relation between Lebesgue measurable sets and the Borel measurable 

sets? 
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So, the first property is that, let us take any set N, which is in R 2 and such that its 

Lebesgue outer measure is 0. 

Look at sets of Lebesgue outer measure 0 in the plane. So, we first claim, that under any 

linear transformation T, the image is also a Lebesgue measurable set of measure 0. That 

means linear transformations take sets of measure 0 to sets of measure 0 in plane. So, to 

prove that let us observe the following thing. 
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So, let us take N, a subset of R 2 and Lebesgue measure of N equal to 0. But saying 

Lebesgue measure of N is equal to 0 is same as saying, for every epsilon bigger than 0 

there exists rectangles, there exists rectangles, say R i, i bigger than or equal to 1, such 

that the set N is contained in the union of this rectangles R i, and the Lebesgue measure 

of the rectangle R i added together is less than epsilon. So, saying a set as a null set is 

same as saying it can be covered by rectangles, such that the total measure of the 

rectangles put together is less than epsilon. 

But note, now, so each R i is a rectangle, so it is a Borel set, is a Borel subset of R 2. So, 

that implies, that T of R i also is a Borel subset of R 2 for a nonsingular linear 

transformation T, if T is nonsingular. 

And the Lebesgue measure of T of R i, by what we have proved just now, is equal to 

determinant of T times Lebesgue measure of, Lebesgue measure of R i, that is just now 



we have proved. For Borel set this property holds, so now the fact, that N is covered by 

union of R i’s is, implies, so this fact star implies, that T of N is covered by union of T of 

R i i equal to 1 to infinity. 
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So, this is contained by T of R i, so that implies, by the countable sub additive property 

of the Lebesgue measure, outer Lebesgue measure R 2 of T N is less than or equal to 

summation i equal to 1 to infinity Lebesgue outer measure of T of R i. And Lebesgue 

measure of T of R i is determinant, so this is equal to determinant of T absolute value 

times summation of i equal to 1 to infinity Lebesgue measure of R i and that is less than 

epsilon. 

So, it is less than or equal to absolute value of determinant of T times epsilon and since 

this property holds, so this holds for every epsilon bigger than 0. So, let epsilon goes to 

0, so that will imply, Lebesgue measure of outer measure of T of N is equal to 0 when T 

is, if T is nonsingular and for a singular transformation we know, T of R 2 itself is 0, so 

T of N will be 0. 
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So, this proves the fact, that for every set N, which is of Lebesgue outer measure 0, 

lambda, the image T of N under any linear transformation is again a set of measure 0. 

And the second fact, between Lebesgue measure and, Lebesgue measure and, Lebesgue 

measurable sets and the Borel measurable sets is the following - every Lebesgue 

measurable set E can be represented as a union of 2 sets, one Borel set A and a null set N 

and the Lebesgue measure of E is same as the Lebesgue measure of the set A, N is a set 

of measure 0. So that is the 2nd fact one has. 
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So, let us take, so let A be a Lebesgue measurable, let us take Lebesgue measurable set 

in R 2, then the set A can be written as E union N, where E is a Borel set in R 2 and the 

Lebesgue measure, so lambda, lambda R 2 of A is same as lambda R 2 of E. 

Now, if we look at T of A, so if we look at the set T of A, then that will be equal to T of 

E union, T of, T of N, if T is, say nonsingular. And now, this is a Borel set and this is 

again a null set, so Lebesgue outer measure of T of A is equal to Lebesgue outer measure 

of T of E, which is equal to determinant of, because this is a Borel set, so determinant of 

T times Lebesgue outer measure, Lebesgue measure of the set E and which is same as 

the Lebesgue measure of the set A. So, this is same as Lebesgue measure of T times 

Lebesgue measure of A. 

So, we have used the fact, that if A is a Lebesgue measurable set, then A can be written 

as E union N, where E is a Borel set and N is a null set. That means the Lebesgue 

measure of R 2 of the set A is same as the Borel, Lebesgue measure of the Borel 

component of it, that is, R 2 of E. 

So, now, if I apply transformation T to it and say T is nonsingular, then T of A will be 

equal to T of E union T of N, and just now we observed, that T of N is a null set and T of 

E is a Borel set. So, Lebesgue measure of T of A will be nothing but the Lebesgue 

measure of T of E, which by the earlier case is determinant of T times Lebesgue measure 

of E and Lebesgue measure of E is same as the Lebesgue measure of A. 

So, that proves, for a, for a, that proves for a Lebesgue measurable set, the Lebesgue 

measure of the transformed set T of A is same as determinant of T times the Lebesgue 

measure of the set A itself. 

So, that proves the theorem completely namely; so, that proves the theorem completely, 

namely, that if E is any Lebesgue measureable set, then T of E is also Lebesgue 

measurable and the Lebesgue measure of T of E is equal to determinant of T times the 

Lebesgue measure of E. So, this is how the, this is how the Lebesgue measure of a set E 

in the plane changes with respect to linear transformations. 

Now, we will give some applications of this now because there are many nice linear 

transformations in the plane. 
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So, let us look at the first application of this, namely, so let us take 2 vectors a and b, (a 

1, b 1), (a 2, b 2) in R 2 and look at the set, which are all sets, set P of all vectors in the 

plane of the type, where the 1st component is alpha 1 a 1 plus alpha 2 a 2, and the 2nd 

component is alpha 1 a 1 plus alpha 2 b 2, where alpha 1 and alpha 2 are numbers 

between 0 and 1. This is called the parallelogram determined by the vectors (a 1, b 1) and 

(a 2, b 2); in the picture it is the following. 
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So, if we have the plane, let us take 2 vectors, one vector is this vector and the other 

vector is this. So, this is the vector, which is (a 1, b 1) and this is the vector, which is (a 

2, b 2). Then, they determine a parallelogram, the geometric object, so let us see what is 

that parallelogram, so that is nothing but this parallelogram. 

So, that is the parallelogram P determined by these 2 vectors (a 1, b 1) and (a 2, b 2), and 

any vector in between, so this vector, so this parallelogram P is characterized by, that this 

any vector inside here, say, call it as (x, y), so P is then x, looks like alpha 1 a 1 plus 

alpha 2 a 2 and 2nd one looks like alpha 1 b 1 plus alpha 2 b 2, where this alpha and 

alpha 2 have the property, their numbers between 0 and 1. So, alpha 1, alpha 2 between 0 

and 1, so this is the point, this is a point with components alpha 1 and alpha 2. 

So, this is what the parallelogram, so one can check geometric fact, that if I take 2 

vectors a 1 and b 1 and look at the geometric picture of this parallelogram, then if I take 

any alpha 1, alpha 2 between 0 and 1 and look at this, then this is nothing but the 

parallelogram given by these 2 vectors. The claim, we want to is that, we want to show, 

that the Lebesgue measure of this parallelogram is same as the absolute value of, a 1 b 1, 

(a 1, b 2) minus (a 2, b 1). 

Say, these are the components, (a 1, b 1) and (a 2, b 2) are the components of the vectors, 

which we started with, so the claim is, so the claim, that Lebesgue measure of P is equal 

to the absolute value of (a 1, b 2) minus (a 2, b 1). 

So, to prove this, we are going to show, that this P is equal to, T of, T of a set E, where T 

is a linear transformation, T linear and E is a nice set. And it is not difficult to guess what 

is T and what is E, so, let us just look at that. 
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So, let us observe that if T is the matrix with the components (a 1, a 2, b 1, b 2), so rows 

are the vectors, which are given vectors, are (a 1, b 1) and (a 2, b 2). So, the 1st column 

is the vector (a 1, b 1), 2nd column is the vector components of the vector (a 2, b 2). 

If I look at this transformation T and look at the set E with components alpha 1, alpha 2 

in, where (alpha 1, alpha 2) are real line and they are between 0 and 1. So, what is this 

set E? This set E is nothing but, this set E is nothing but a rectangle, actually a square in 

the plane with sides (0, 1) to (0, 1) and if I look at T of E, so any set (alpha 1, alpha 2), so 

what will be this? 
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So, what we are saying is the following, that if I look at the set E, so here is, here is the 

set E, which looks like, so this is the set E (0, 0), this is (1, 0), (1, 1) and (0, 1). 

So, if I look at this set and look at the transformation given by T where T is equal to a 1, 

b 1 and a 2, b 2. If I look at this, then the image of this, under this is precisely, is 

precisely, that parallelogram P, where this is a 1 and a 2 and this is (a 1, b 1) and this is 

(a 2, b 2). So, this transforms to this parallelogram. 

So, if T is this and E is this set, then T of E is equal to P, that is because what is…, So, 

let us look at (a 1, a 2, b 1, b 2) and a vector is (alpha 1, alpha 2), so what is that? 

So, that is, a 1 alpha 1 plus a 2 alpha 2 and that is, gives you, b 1 alpha 1 plus b 2 alpha 

2. So, that says, the vector here (alpha 1, alpha 2) goes to the vector there given by this 

and that is precisely the parallelogram. 

So, under the, this is a linear transformation, so under the linear transformation T given 

by this matrix, the unit square changes to the parallelogram and once that is true, so this 

will imply, that the Lebesgue measure, so this will imply, the Lebesgue measure of P is 

same as the Lebesgue measure, of the, in the plane of T of E and that is equal to 

determinant of T absolute value times Lebesgue measure of E. But Lebesgue measure of 

E, that is, the area, that is a rectangle, so it is an area, that is equal to 1 and determinant 

of T is (a 1, b 2) minus (a 2, b 1). 
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So, that gives us the result, that the Lebesgue measure of P is same as the Lebesgue 

measure of the transform set T of E, which is equal to determinant of T times the 

Lebesgue measure of E and that Lebesgue measure of E being equal to 1. So, that gives 

us determinant of T, which is nothing but (a 1, b 2) minus (a 2, b 1). So, this gives us, 

that Lebesgue measure of the parallelogram is the determinant of the, given by the 

vector, so that is (a 1, b 2) minus (a 2, b 1). 

So, this is one of the results, that one proves normally in geometry, in linear algebra, that 

the determinant is nothing but a measure of the parallelogram, area of the parallelogram 

determined by the vectors. 
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Let us look at another application of this formula, how the linear transformation 

changes? So, let us look at the Lebesgue measure of the unit circle, area, region enclosed 

by the unit circle, so Lebesgue measure of all vectors (x, y) in R 2 such that, x square 

plus y square is less than 1. So let us look at that. 

So, let us call the Lebesgue measure of this to be equal to a number pi, we are not 

assuming anything about pi, we are just saying that the Lebesgue measure of this unit 

circle is a finite quantity. 
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So, let us see, why it is finite? So, here is the unit, it is a bounded, so this is x square plus 

y square less than 1, so that is that set, so this is a bounded set. 

So, for example, this is enclosed inside this rectangle, inside this square of, this is 1 and 

this is 1, so this is 0 and this is 1 and this is 1. So, it is enclosed inside this square of 

length, so that means, that the area, so this is less than or equal to, it is a subset of the 

square and square is a bounded thing. So, that means, the Lebesgue measure of the 

points, say, that x square plus y square is less than 1, will be less than or equal to the 

Lebesgue measure in the plane of the square, which is finite quantity. 

So, that means, that the Lebesgue measure of the region enclosed by the unit circle is a 

finite number and this finite number, we are just calling it by the number, we are 

denoting it by the symbol pi. So, pi is the Lebesgue measure of the region enclosed by 

the unit circle. 
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So, then the claim is that if we look at the annulus region, that is, x square plus y square, 

bigger than a square and less than b square, then its Lebesgue measure is pi of b square 

minus a square. So, what we want to prove is that if I look at, here is the bigger circle 

and here is the smaller one and this radius is a and this radius is b. 



So, we are saying, the Lebesgue measure of this portion is nothing but pi b square minus 

a square; that is what we should be expecting from our ordinary geometry, that we have 

been learning in schools namely, the area of the circle is equal to pi r square. 

So, we will first prove that the area of a circle of radius r is equal to pi r square and from 

there we will deduce this fact. So, let us observe, that, so the first thing is, let us take the 

linear transformation T, which is diagonal, which is given by (a, 0, 0, a). 

So, we are looking at the diagonal transformation (a, 0, 0, a) and look at the unit circle, 

area enclosed by the unit circle, so that is E. So, E is the set of all (( )) vectors (x, y) in R 

2, say, that x square plus y square is less than 1. 

Then, if we look at any point here and transform it according to this T that will look like, 

so let us look at what will that look like? 
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So, let us look at the transformation (a, 0, 0, a) and let us look at a vector (x, y), so that 

gives us the vector (ax, ay). 

So, if this vector had the property, that x square plus y square is less than 1, then the 

transform vector (ax, ay) has the property, that ax square plus ay square is equal to a 

square times x square plus y square, so which is less than a square. 



(Refer Slide Time: 42:52) 

 

So, that shows, that the unit circle, so if E is the unit circle, that is (x, y) x square plus y 

square less than 1, then T of E is the circle, the region enclosed by the circle, x square 

plus y square less than a square. 

So, that is what we know, so that means, now we apply, apply our theorem of linear 

transformations. So, look at the Lebesgue measure R 2 of the transform set E, so that is 

equal to, by the property of that theorem it is determinant of T times Lebesgue measure 

of the set E, but determinant of T is equal to, it is a diagonal transformation, so that is a 

square and Lebesgue measure of E, which is unit circle, is pi. 

So, Lebesgue measure of the transformed set is equal to pi a square. So, that means, the 

Lebesgue measure of all the points (x, y) say, that x square plus y square is less than a 

square is nothing but pi a square. So, that is the magnification that we are getting and so 

as a consequence of this, let us deduce for the annulus region. 

The area is the required Lebesgue measure, is pi of b square minus a square. So, for that 

we have to just observe, that if I look at the circle, so the set of points (x, y), such that x 

square plus y square is less than b square is a set, which is a bounded set and Lebesgue R 

2 of that is finite. 
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So, it is set of finite outer measure, finite Lebesgue measure, so I can write, that the 

Lebesgue outer measure of x square plus y square bigger than a square and less than b 

square, is nothing but the Lebesgue measure of the set x square plus y square less than b 

square (( )) minus the inner circle. So, that is x square plus y square less than a square. 

And now everything being finite, I can write this as the Lebesgue measure of the region 

enclosed by the outer circle, so that is x square plus y square less than b square minus the 

Lebesgue measure of x square plus y square of Lebesgue measure of x square plus y 

square less than a square. 

This is possible because everything is a finite quantity. So, the measure of the difference 

a minus b, measure of a minus b is measure of a minus measure of b whenever b is a 

subset of a, and everything is finite. 

So, that property gives you this and this is pi of b square. Just now we saw pi of a square, 

so that is pi of b square minus a square, so that proves. So, what we are saying is these 

simple properties help us to confirm, that the Lebesgue measure on the plane, that we 

have defined is essentially extending the notion of area in the plane to a bigger class of 

subsets. And the usual formulas for the areas, that you have been using priory without 

any justifications, are now being justified by the Lebesgue measure. 



I will just point out one more extension of this result, namely, that the area, Lebesgue 

measure of the annulus region is pi of b square minus a square to something, in 

integration, which looks like the change of variable formula in multiple integrals, 

namely, if you have a double integral, then and you change to Cartesian to polar 

coordinates, then the d x d y, normally we have that formula, that when you change d x d 

y, it should be r d r d theta. 

So, more rigorous, we are saying, that for a particular class of functions, I want to state 

and give an outline of the proof, we will not be proving it fully, we will give an outline 

of the proof. 

So, let us go to the next application of, so this is what I just now said, that the Lebesgue 

measure of the annulus region is Lebesgue measure of the outer circle minus Lebesgue 

measure of the inner circle, that is, pi b square minus a square. 
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So, this is another application or extension of this result, just now we proved, is called 

the integration of the radial functions. 

So, let us look at, the theorem says, let us look at a function defined from (0, infinity) on 

the positive, on the nonnegative part of the real line, taking values in, nonnegative 

values, so that is 0 to infinity. So, it is a nonnegative measurable function defined on the 

nonnegative part of the real line. 



Then, the claim is, that if I look at the double integral, integral over R 2 of f absolute 

value of x, x is a vector, so absolute value means the norm, the magnitude of the vector 

x, so look at this, so this is like a composite function, the vector x goes to the magnitude, 

that is a nonnegative real number and f evaluated at that. 

So, the double integral, integral with respect to R 2 is given by 2 pi times f r d r d theta. 

So, that is the claim, that this integral is equal to this integral and what is the meaning of 

a nonnegative radial function? f is a nonnegative, I should have said here, it is a radial 

function. That means, it depends only on the absolute value of the function, it does not… 

So, f is a nonnegative, so this is a radial function. 

So, this you can think it as f composite, the magnitude is the radial function, is the radial 

function, it, the value of this composite function depends only upon the magnitude of the 

vector and not on the position of the vector. 

So, to prove such a result, the proof is a typical application of a simple function 

technique. So, one tries to prove, that for simple measurable functions this is true and 

then apply monotone convergence theorem and so on. So, I will just outline the steps, for 

a detailed proof you may consult the text book. 

So, let us look at the first step, let us look at the first step when this function f is the 

indicator function of an interval (a, b) when f is the indicator function of an interval (a, 

b), where (a, b) is an interval in the nonnegative part of real line. So, a less than b, bigger 

than 0, so when f is the indicator function, let us compute this both sides and what it that 

look like? So, when f is the indicator function of (a, b), so here is the indicator function, 

so this is 0 to infinity. 

So, 0 to infinity means, this will give you, indicator function will give you only a to b. 

So, this will be a to b of the function f r, the function is indicator function, this value is 1, 

so x r d r. So, when you integrate r d r you get r square by 2 between a and b and when 

you put the values, you get b square minus a square by 2, so that is equal to pi of b 

square minus a square. So, this side is nothing but pi of b square minus a square, and 

what is this f? 



So, the indicator function of (a, b) evaluated at the absolute value means, you are 

integrating in the annulus region between the limits a and b. So, it is pi b square minus pi 

a square, so in that, then it is just equal to pi of b square minus a square. 

So, these both sides are nothing but the result, that we discussed just now, that the area of 

the annulus region is equal to pi b square minus a square. So, step 1 is for indicator 

function is that result. 
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The next thing is we look at sets, which are either sequences E n’s, which are sequences 

of sets, which are Lebesgue measurable of course, either are pair-wise disjoint or an 

increasing sequence. And supposing for the indicator function of each set E n this result 

holds, then the claim is, it also holds for the union of E n’s. 

So, if for each E n the result holds, then the result, sorry, for each indicator function of 

each E n it holds, then it also holds for the indicator function of the set E and that 

essentially, is an application of the monotone convergence theorem to the earlier result. 
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And then the step 3 is, from such things one comes to open sets by the fact, that each 

open set is a countable disjoint union of, countable disjoint union of intervals. So, for 

intervals, that property holds, so this will hold for every open set and from the open sets 

and null sets, so one shows the corresponding property also holds for null sets. 

So, open sets and null sets, one goes to the indicator function of any Lebesgue 

measurable set because any Lebesgue measurable set can be written in terms of open sets 

and null sets. So, and then from this one applies usual monotone convergence theorem 

technique from the indicator function to nonnegative measurable function. So, these are 

the steps one follows to prove theorem of this kind. 
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I just want to conclude today’s lecture by saying what we have done it for product 

spaces, of 2 product spaces, can also be extended to any finite number of product spaces. 

So, namely, if you are given a finite number of measure spaces (X i, A i, mu i), we 

define the product of 2 of them, can be extended by, sort of, doing one at a time, by 

iteratively, we can define the product of the space, this X spaces, X i's 1 to n, you can 

define the product sigma algebra A i’s 1 to n and you can also define the product 

measure, inductively one can do that. And so, this is called the product space, I will not 

go into the details of it, but this is useful. 
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And one can also show, that if you take product of say, some finite number, m number, 

and take product of some n number of copies and then take the product again, that is 

same as the product of them put together. So, it is same as the product of X i’s from, n, 1 

to m plus n. So, these are same, so one can, same usual identity. 

So, basically it is saying that what we have done it for 2, product of 2 measure spaces, 

can be benefit for a finite number of them. 
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So, as a consequence one can define the notion of Lebesgue measurable subsets in R n 

and the notion of Lebesgue measure in R n; so, this can be done. So, again, those who 

are interested should refer the textbook for more details. 

So, what we have done today is we have completed the study of product measure spaces 

and with that we have essentially completed what is called the basic concepts in measure 

theory, namely, we have done the extension of measure, then integration of measure, 

then measure and integration on product spaces. 

This is the core of the subject and from now onwards I will be looking at some special 

topics in our subject of measure theory. 

Thank you. 


