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Welcome to lecture 3 on measure and integration. We had started looking at the concept 

of algebra of subsets of a set X; we will look at some more properties of that today.  

(Refer Slide Time: 00:38) 

 

After that, we will start looking at what are called sigma algebras of subsets of a set and 

then come to sigma algebra generated by a class of subsets of a set x; we then go on to 

look at what is called a monotone class, the monotone class generated by a class and then 

look at a monotone class generated by an algebra. 
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Let us just recall what we had started looking at, namely, the algebra. We said an algebra 

of subsets. A class of subsets A contained in P of X, that is the power set of X, is called 

an algebra if it had these properties: (i) – the empty set and the whole space is a member 

of A; secondly, whenever A belongs to A, it implies its complement is also inside the 

class A; that is, the class A is closed under the operation of complements; the third 

property was whenever A and B belong to A, that implies A intersection B belongs to the 

algebra.  

These are the three properties that define a class A to B – an algebra. Keep in mind this 

property because of complements (Refer Slide Time: 01:53). This can be equivalently 

stated as A and B belonging to the class A implies A union B also belongs to the class A. 

This is what we had defined as a collection of subsets of a set X to be an algebra. 



(Refer Slide Time: 02:18) 

 

Then, we looked at various properties of algebras. For example, we proved one thing – 

that a class C need not be an algebra, but you can generate an algebra out of it; so, this is 

the smallest algebra including the given collection C. We then went on to prove that if 

you take a collection C and restrict its elements to a set E which is defined as all 

elements of the type A intersection E where A belongs to C, then if you generate an 

algebra out of this collection C intersection E which is the algebra of subsets of E 

generated by this collection C intersection E, we showed this is also equal to the algebra 

generated by C restricted to E. These are the various ways of generating more algebras 

out of the given algebra. 
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What is the advantage of having an algebra is the following. Let us suppose that we have 

got A is an algebra and then let us take a sequence A1, A2, up to An inside A, a 

collection of elements of A; let us take their union E equal to union of An

However, there is something nice one can do. Let us define B

s, n equal to 1 

to infinity; of course, this E need not belong to the algebra because the algebra is only 

closed under finite unions.  

1 to be equal to A1 itself; 

let us define B2 to be equal to A2 and remove from it the set elements which are in A1. 

Similarly, let us define B3 to be A1 union A2 and remove from it the elements which are 

in A3 and so on. You will define Bn in general to be equal to union Ai, i equal to 1 to n 

and remove from it the elements which are n minus…. So, Bn is defined as the union of 

elements up to n minus 1 and remove from it the elements which are in An. 
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We have generated a new sequence out of the given sequence. Let us observe that Bn 

which is equal to union of these Ais minus An – what does this look like? It is union Ai, i 

equal to 1 to n minus 1 intersection An complement because removing ((.)) is the same as 

taking its intersection with An complement. Now, observe that each Ai

A

 is an element in 

the algebra; this is a finite union of elements in the algebra (Refer Slide Time: 05:47).  

n complement is in the algebra because An is in the algebra; the algebra is closed under 

complements. This implies that each set Bn is an element of the algebra A for every n; 

that is one observation. Secondly, let us observe that Bn intersection Bm is empty for n 

not equal to m because what we are doing is B1 is A1; B2 is from A2 remove A1; so B1 

and B2 are going to be disjoint; B3 is A1 union A2 minus A3; we have removed what is 

in A3; so, this B3 is going to be disjoint from both B2 and B1

In general, it is quite obvious that B

.  

ns are ((.)); this is disjoint (Refer Slide Time: 06:39); 

they are elements in A. Further, here is an important consequence: the way we have 

constructed, if i take union of Bis, i equal to 1 to n, what is that equal to? B1 is A1 and 

B2 is A2 minus A1. What is B1 union B2? That is the same as A1 union A2. Similarly, B1 

union B2 union B3 is the same as A1 union A2 and union A3; that is the same as B1 

union B2 union B3. So, for every n, union of Bis, i equal to 1 to n is the same as union of 

Bis, i equal to 1 to n. As a consequence, this implies that union of Bn, n equal to 1 to 

infinity is the same as union i equal to 1 to infinity of Ai, which was our set E.  



What have we shown? We have shown that if we start with any countable union of 

elements in the algebra (Refer Slide Time: 07:50), E need not be an algebra but E can be 

represented as a disjoint union of sets Bn and each Bn

(Refer Slide Time: 08:12) 

 is an algebra. We have proved a 

theorem which is going to be quite useful and that is the advantage of being inside an 

algebra. 

 

Let us recall once again: if A is algebra of subsets of a set X and a set E is union of Ans, 

n equal to 1 to infinity where each An belongs to A, then there exist disjoint sets so there 

exists sets Bns belonging to the algebra which are pairwise disjoint and their union is 

equal to Bns. So, any countable union in algebra can be represented as a countable 

disjoint union; that is the advantage of being in a class which is an algebra. That is nice; 

we will see applications of this next time. 
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Let us now start with a class which is slightly stronger than an algebra; that is called 

sigma algebra. Let us start with a collection X is a nonempty set and let S be a class of 

subsets of the set X with the following properties: (i) – the empty set and the whole space 

are elements of it, like in a semi-algebra and like in an algebra; A complements belong to 

S whenever the set A is in S; that means the collection S is closed under taking 

complements, as in the case of an algebra; these two properties are the same as were the 

case for an algebra.  

The third property is the one which distinguishes it from an algebra; we want that 

whenever sets Ais are in S, i equal to 1, 2, 3 and so on, that means whenever you take a 

countable collection of sets in S, their union i equal to 1 to infinity Ai

Let us just emphasize once again: a sigma algebra of subsets of a set X is a collection 

which includes the empty set and the whole space; it is closed under taking complements 

– if A belongs to S, A complement belongs to S; and whenever you take a sequence A

 also belongs to S; 

that means the collection S is closed under taking countable unions also. Such a 

collection we are going to call as a sigma algebra, sigma indicating that it is closed under 

a sequence of unions.  

i 

of elements of S, their union is in S; that means S is also closed under taking countable 

unions; such a class is called a sigma algebra. 
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One obvious example is that every sigma algebra is also an algebra because sigma 

algebra means it is a collection which is closed under countable unions and an algebra 

only requires finite unions. Of course, both algebra and sigma algebra are closed under 

taking complements and the empty set and the whole space are always members of both 

of them; so, every sigma algebra is also an algebra.  

Let us look at an example of X, an uncountable set. Let us look at the collection of all 

those subsets of X such that either the set is finite or its complement is finite. An element 

E is in this collection F if either the set is finite or its complement is finite. We had 

already shown that this collection F is an algebra. 



(Refer Slide Time: 11:42) 

 

 

Let us recall what we have already shown that if I take this collection F of subsets E of X 

such that E or E complement finite, then we already observed that F is an algebra. The 

question is: is F a sigma algebra? Does it have the property that E1, E2 up to En 

belonging to F imply always that union of Ens, n equal to 1 to infinity also belongs to F? 

That is not true for the following reason. Note that X is uncountable. 
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As a consequence of this, there exists a subset E contained in X such that E is countably 

infinite and E complement is not finite. If this is not true, then what will happen? We will 

have X which is equal to E union E complement. This is countable and this is finite; that 

will imply X is countable, which is not true – a contradiction. Whenever you have got a 

set X which is uncountable, there always exists a subset of it such that E is infinite and 

its complement is not finite; that is, E complement is infinite. We have got a set E which 

is countably infinite and its complement is not finite. That means what?  

(Refer Slide Time: 14:35) 

 



Since E is countably infinite, I can write E equal to x1, x2 up to xn and so on; it is a 

countably infinite set; I can write it as a sequence; I can enumerate the elements of it. 

That is equal to singleton xi union, i equal to 1 to infinity. Let us observe that singleton 

xi

Why does not E belong? It is because if E has to belong to this collection F, E should be 

either finite or E complement is finite; both of them are not true. Basically, if I take a set 

E which is countably infinite, then it is countable union of elements of F and it does not 

belong to F; so, F is not going to be a algebra.  

 is an element in the algebra F because singleton is a finite set; that does not imply E 

which is a union of these elements (Refer Slide Time: 15:19) belong to F; E does not 

belong to F.  

(Refer Slide Time: 15:54) 

 

What we are saying is whenever X is uncountable and look at this collection of sets E 

contained in X so that E or E complement is finite, then it is an algebra and it is not a 

sigma algebra of subsets of X.  



(Refer Slide Time: 16:21) 

 

This collection that we have taken, we have proved that it is an algebra of subsets of X 

but it is not a sigma algebra of subsets of X. So, every sigma algebra is an algebra, but 

every algebra need not be a sigma algebra; that is the observation that we get from here 

(Refer Slide Time: 16:36). Let us look at some more examples of sigma algebras. Let X 

be any set; then, obviously, the empty set and the whole space put together (the two 

elements) – that collection is a sigma algebra because there are only two elements; their 

union belongs closed under complements and so on. 

Of course, the collection of all subsets of X, the power set of X, also is a sigma algebra 

of subsets of X because it is closed under all kinds of operations. The empty set and the 

whole space put together is an example of a sigma algebra; power set is an example of a 

sigma algebra of subsets of any set X. These are obvious examples of sigma algebras of 

subsets of X. 
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Let us look at some nontrivial examples of sigma algebras of subsets of X. Let us take X, 

an uncountable set; let us take S to be a subset, all those subsets of X, such that A or A 

complement is countable. The claim is S is an algebra of subsets of the set X. Let us try 

to prove that this collection S is a sigma algebra of subsets of X.  

(Refer Slide Time: 18:05) 

 

What is S? S is the collection of all those subsets A contained in X such that A or A 

complement is countable. The first observation is that the empty set belongs to S, 

because the empty set is taken to be a finite set and so it belongs to S. Does X belong to 



S? Yes. X belongs to S because its complement is empty set and hence that belongs to S; 

the empty set and the whole space both belong to S. Clearly, if A belongs to S, then this 

implies ((.)) if and only if A complement belongs to S because our defining condition is 

symmetric with respect to A and A complement. 

Let us check the third property that if An belongs to S, n equal to 1, 2, 3 and so on, then 

this implies union of Ans, n equal to 1 to infinity also belongs to S; let us check that 

property. Obviously, like in the case of finite and complement finite, we have to divide it 

into cases. The first case is case (i): all Ais or all Ans are countable, but that will imply 

that union of Ans is also countable and hence belongs to S. Why is union of An

(Refer Slide Time: 19:49) 

s 

countable? It is because a countable union of countable sets is countable – that is the set 

theory property; this set is countable and so it belongs to S. 

 

Let us look at the second possibility, the second case. What is the possibility? Not all 

Ans are countable. That means there exists some n0 such that An0 belongs to S, but An0 is 

not countable. That means what? An belongs to S not countable means that An0 

complement is countable by the very definition of S. Now, observe that union of Ans, n 

equal to 1 to infinity includes the set An0 because that is one of the members. That 

implies that union of Ans, n equal to 1 to infinity complement is contained in An0 

complement and this is countable. So, this set's complement is a subset of a countable 

set.  



(Refer Slide Time: 21:00) 

 

That implies union An

Let us look at the collection S of all subsets of A such that A or A complement is 

countable (Refer Slide Time: 21:44). Then, this collection is a sigma algebra of subsets 

of X. Let us observe that we have not used anywhere the fact that X, the underlying set is 

a countable set; this is true for any, actually. What we have shown is that if X is any set 

and let us take the collection of all those subsets of X which are either countable or their 

complements are countable, then that forms a sigma algebra of subsets of X (Refer Slide 

Time: 22:05).  

, n equal to 1 to infinity is countable, implying that this belongs to 

the class S. This is a set whose complement is countable; that means this set must belong 

to S. This is contained in A ((.)) and this is countable; that means this set is countable 

(Refer Slide Time: 21:28) and because the complement of this set is countable, this 

belongs to S. 

Let us observe one thing: we have not used anywhere the fact that the set X is 

uncountable; this property even remains true when X is any set. Of course, the collection 

S still remains a sigma algebra, but its nature will change in the sense that, for example, 

if X is a countable set (you can try to prove yourself), then for this collection of those 

subsets of X we will say that A or A complement is countable. In fact, that will be all 

subsets of the set X. So, it is a nontrivial example only when X is an uncountable set. We 

have given an example of a collection S of subsets of set X which is a sigma algebra. 
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Next, let us ask a question. Given a collection C of subsets of a set X, it may not be an 

algebra and it may not be a sigma algebra, the question arises: can we say that we can 

find a sigma algebra of subsets of the set X which includes this collection C? In some 

sense, this collection C may not be closed under complements or may not be closed 

under taking countable unions; we would like to enlarge it so that it becomes a sigma 

algebra. 

The obvious examples are if you take all subsets of the set X, then that itself is a sigma 

algebra. That includes C but that is a very trivial example of a sigma algebra which 

includes C. We would like to modify our question such that given a collection C of 

subsets of a set X, does there exist a sigma algebra of subsets of X which includes C and 

is smallest?  



(Refer Slide Time: 24:22) 

 

The answer is yes and it is something similar to what we have done for the case of 

algebras. Let X be any set and C be any class of subsets of set X. Let S of C denote the 

intersection of all the algebras S of subsets of X which includes C. Then, the claim is that 

this collection S of C is a sigma algebra of subsets of X; it includes the class C and it is 

the smallest. That will show that given a collection C of subsets of a set X, you can 

always find a sigma algebra of subsets of X which includes C and which is the smallest.  

(Refer Slide Time: 25:15) 

 



Let us check these three properties one by one. S of C is defined as the intersection of all 

the algebras S such that S algebra and S includes C. The first property we want to check 

is that the empty set and the whole space belong to S of C; that is obvious from the fact 

that the empty set and the whole space will belong to every algebra S which includes C 

because S is an algebra; the empty set and whole space belong to it – every element S in 

this collection whose intersection we are taking; so, the intersection also will have that 

property. That is the obvious property, as observed in the case of the algebra generated.  

The second thing: let us take a set a which belongs to S of C; that implies that A belongs 

to S. Sorry, this is a sigma algebra; we are looking at the case of sigma algebras (Refer 

Slide Time: 26:14). We are taking the intersection of all sigma algebras which includes 

C. So, if A is inside the class S of C, then A belongs to S and S is a sigma algebra. That 

implies that A complement belongs to S for every S; that implies that A complement 

belongs to the intersection of all this collection. Hence, A complement is nothing but S 

of C. 

(Refer Slide Time: 26:51) 

 

Similarly, let us take the third property; let us take a sequence An which belongs to S of 

C for every n. That implies An belongs to S for every S and that implies, because this is a 

sigma algebra, the union of Ans n equal to 1 to infinity also belongs to S for every S. 

That implies that union n equal to 1 to infinity An also belongs to the intersection of all 

this algebras S over S; that is nothing but S of C. 



What we have shown is that if you look at S of C (Refer Slide Time: 27:35) – the 

intersection of all sigma algebras which includes C, then they themselves form a sigma 

algebra. What we have shown is S of C is a sigma algebra and that C is contained in S of 

C; it is once again obvious because S of C is the intersection of all sigma algebras which 

includes C; so, the intersection also will include it; that also is an obvious property. 

Why it is it the smallest? The smallest property also is true once again by the very fact 

that S of C is the intersection of all the sigma algebras which include C (Refer Slide 

Time: 28:22). S of C being the intersection is the smallest anyway; that proves the fact 

that S of C is a sigma algebra of subsets of X; C is inside S of C; if S is any other algebra 

of subsets which includes C, then S of C must be inside S, because S of C is the 

intersection of all (intersection is inside every element).  

What we have shown is given a collection of subsets of the set X, C – a collection of 

subsets, it may not be an algebra, but you can put it inside a sigma algebra of subsets of 

X denoted by S of C and such a thing exists because of this construction. Such a thing is 

called the sigma algebra generated by the class C. 

(Refer Slide Time: 29:18) 

 

S of C we are going to call it as the sigma algebra generated by a class. Let us look at 

some examples of sigma algebras generated. Let us look at X, the collection of all… X is 

any nonempty set. Let us look at all singleton subsets of this set X. Let us call that 



collection as C; C is the collection of all singletons where singletons are elements of the 

set X. The claim: we want to find out what is the sigma algebra generated by it.  

If we take a sequence of elements x1, x2, x1 up to xn

(Refer Slide Time: 31:01) 

 in X and look at those singletons, 

then their union is going to be an element in C. That means all countable sets must be 

elements of C. Similarly, all sets whose complements are countable also must be 

elements of the set E. As a consequence, we expect that this answer is nothing but the 

algebra F of C, the sigma algebra generated by… This is not correct (Refer Slide Time: 

30:34). What we should have is the sigma algebra generated by C; this is a correction 

here. Then, the sigma algebra generated by this must be equal to this collection F of C, 

where either E or E complement is countable. 

 

Let us prove this fact. X is any set. We are taking S of C to be equal to all those subsets 

A contained in X such that A or A complement is countable; this is what we want to 

prove. Let us call this collection S; sets which are countable or their complements are 

countable – that collection is called S. The claim is S of C, the sigma algebra generated 

by the singletons, is nothing but this collection.  

Let us observe. The first observation is that S is a sigma algebra; we have just now 

proved that this collection S is a sigma algebra. The second is that C is inside S because 

what are the elements of C? They look like singletons; a singleton is countable and so 

this belongs to S. It is because of this reason that C is a subset of X. This is a sigma 



algebra which includes…. Third, we want to show it is a smallest – S is smallest. Let us 

take any other algebra; let F be any sigma algebra such that that C is a subset of F. 
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What do we want to show? We have to show that F includes this collection S. Let A 

belongs to S. Two cases arise: either A is countable. In that case, A can be written as x1, 

x2 and so on; that can be written as union of singletons xi, i equal to 1 to infinity. Each xi

If not, what is the second possibility? A complement is countable. Then, by the same 

argument, this will imply that A complement belongs to F. F is a sigma algebra and so 

this implies that A belongs to F. In either case, we have shown that if F is any sigma 

algebra (Refer Slide Time: 34:23) which includes C, then this F must include S. That 

proves the fact that S of C, the sigma algebra generated by the singletons, is nothing but 

all those sets such that either the set is countable or its complement is countable.  

 

is an element in C and C is inside F (Refer Slide Time: 33:44). When C is inside F, every 

singleton belongs to F and F is algebra; so, this is a sigma algebra; this implies this 

belongs to F. If A is countable, then it belongs to F.  

We are able to give a description. As a consequence, we are able to give a description of 

the sigma algebra generated by a collection of subsets in this case when the collection C 

consists of singleton sets, but let us be very careful; in general, for a set X given a 

collection C of subsets of X, it is not always possible to describe the elements of S of C 



explicitly in terms of elements of C; it is not possible always; remember that was also the 

case when we looked at the algebra generated by a collection of subsets C. 

Only when C was a semi-algebra were we able to describe the algebra generated by the 

semi-algebra; we were not able to give a general description of the algebra generated by 

a class C. Similarly, it is not possible to give a description of the sigma algebra generated 

by a collection of subsets of a set X, but such are the collection of sets which are going to 

play a role in our subject later on; so, we have to study them carefully in detail. 
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Let us look at some more properties of such kind of objects. Let us look at something 

called a topological space; I hope some of you are aware of what is a topological space. 
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A topological space consists of a set X and a collection of subsets of X; tau is called a 

topology; it is a collection of open sets in X. This is a collection which has some 

properties: the empty set and the whole space belong to it; if two sets E1 and E2 belong 

to F, then that implies E1 intersection E2 belongs to F; and if Ealpha is a collection of sets 

in F, that implies union of Ealpha

A topology is a collection of subsets of a set X such that the empty set belongs to it; it is 

closed under finite intersections and closed under arbitrary unions; such collections of 

sets are called open sets. Obviously, if tau is a topology, it need not be an algebra or a 

sigma algebra; the reason is obvious because this collection need not be closed under 

complements, which is required for an algebra or a sigma algebra; there it lacks. 

s belong to F. 

Actually, in a topological space, the sets whose complements are open are called closed 

sets. If you want the complement also to be in that collection, then those are the sets 

which are both open and closed; there are not many examples of such things. Let us look 

at a topological space X. F is a topology on X and this need not be a sigma algebra. The 

question is: can we generate the sigma algebra given by this topology (Refer Slide Time: 

38:40)?  

The answer is yes. Let us look at the collection of all open sets in this topological space 

and let us look at the collection of all closed subsets in the topological space. We can 

generate the sigma algebra given by all open sets and we can also generate a sigma 



algebra by all closed subsets of the topological space. The question arises: is there any 

relation between these two sigma algebras? Let us recall a set is closed if and only if its 

complement is open.  

Refer Slide Time: 39:20) 

 

Using this fact, we will prove that collection of all the sigma algebra generated by open 

sets is equal to the sigma algebra generated by closed sets.  

(Refer Slide Time: 39:31) 

 

U is open sets and C is closed sets. The claim is that the sigma algebra generated by open 

sets is the same as the sigma algebra generated by the closed sets. To prove this, we will 



follow a technique which is going to be used again and again. Let us observe; let us take 

a set E which belongs to U; that is the same as saying that E is open; it is equivalent to 

saying E complement is closed. 

That implies that E complement is in the collection C which is inside S of C. What we 

have shown is if E is an open set. then E complement belongs to S of C. As a 

consequence of this, E belongs to S of C because S of C is a sigma algebra. This implies 

that all open sets are inside the sigma algebra generated by all closed sets. Now, this is a 

sigma algebra which includes open sets; so, this sigma algebra must include the smallest 

sigma algebra containing u. That means once U is inside the sigma algebra S of C, the 

sigma algebra generated by it must also come inside S of C, by the very definition. 

(Refer Slide Time: 41:13) 

 

This implies that S of U, the sigma algebra generated by open sets, comes inside S of C. 

This is a technique which is used very ((.)). To prove S of U is inside S of C, what we 

have done is we have shown that U is inside S of C and hence S of U is inside S of C. 

This technique is going to be used very often in our course of lectures. When we want to 

show certain collection of sets has a required property, we show that that collection of 

sets includes a set of generators and hence will include the sigma algebra generated by it, 

provided that collection forms a sigma algebra.  

By this technique, we have shown S of U is inside S of C; by the same technique, you 

can show that S of C is also inside S of U because if I take a set A which is in C, that 



means A is closed; that means A complement is open and so it belongs to U which is in S 

of u; that will imply that A belongs to S of U because that is a sigma algebra. Hence, this 

implies that the sigma algebra generated by C must come inside S of U; so, the collection 

S of C is same as S of U (Refer Slide Time: 42:48). This is a very important collection of 

subsets of a topological space.  

(Refer Slide Time: 42:57) 

 

This is given a name; this collection is called the Borel subsets of the set X. The sigma 

algebra generated by all open sets or by all closed subsets of a set X is called the Borel 

sigma algebra of subsets of the set X. 



(Refer Slide Time: 43:13) 

 

Let us observe a few more things. We recall we started with a collection C of subsets of a 

set X. We said that given a collection of subsets of set X, we can generate an algebra out 

of it. An algebra has properties which the class C may not have. Now, given this 

collection C, we can also generate a sigma algebra out of it; we can also generate the 

sigma algebra by the algebra generated by that class. The question comes: what is the 

relation between these three things? The observation we are going to prove is that given 

a collection C, you can directly generate the sigma algebra by this collection or you can 

generate first the algebra and then the sigma algebra by that algebra; both processes are 

the same. 
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Let us give a proof of this obvious fact, because such kind of proofs are going to be 

useful. Let us look at the proof. If C is any collection of subsets of a set X and I take the 

collection C, I generate the algebra by this collection and then generate the sigma algebra 

by this collection; that is the same as the sigma algebra generated by C. This is what we 

want to prove. Let us observe. Note that C is contained in A of C which is contained in S 

of A of C by the very definition.  

That implies C is the collection which is contained in this sigma algebra; that means the 

sigma algebra generated by C is contained in the sigma algebra generated by the algebra 

generated by C; so, that proves one way. To prove the other way round, what do we have 



to show? Let us also observe that C is contained in S of C and S of C is a sigma algebra; 

hence, it is also an algebra; this implies that A of C must be inside S of C. 

Here, we have used the fact that every sigma algebra is also an algebra. This is an 

algebra including C and so the smallest one must be inside it. Now, this collection is 

inside S of C; this is a sigma algebra; that means the smallest one and so the sigma 

algebra generated by A of C must come inside S of C (Refer Slide Time: 46:02). That 

proves the other way round inequality and this is already proved.  

These two together imply that the sigma algebra generated by any collection C is the 

same as first generating the algebra and then generating the sigma algebra; it does not 

matter; both are same. The proof illustrates the use of this technique again and again. If 

C is inside something and that something is algebra, then the algebra generated comes 

inside and so on. These are going to be techniques which are going to be used again and 

again in our course of lectures. This is one observation: the sigma algebra generated by 

any collection C is also the sigma algebra generated by the algebra generated by that 

collection (Refer Slide Time: 46:49).  

(Refer Slide Time: 46:51) 

 

Let us observe another thing, another way of generating more examples of sigma 

algebras. If you take any collection C and take a subset Y of it, then that gives us C 

intersection Y is the collection of subsets of Y which are inside C. Then, we want to 

show that the sigma algebra generated by this... We are restricting C to Y and then 



generating the sigma algebra by it. The claim is it is the same as the sigma algebra 

generated by C first and then restricting it to Y. 

(Refer Slide Time: 47:37) 

 

Let us give a proof of this fact. X is any set; C is a collection of subsets of P of X; Y is a 

subset of X. We want to show that the sigma algebra generated by C intersection Y is 

equal to the sigma algebra generated by C restricted to Y; this is what we want to prove. 

Let us observe; note that C is contained in S of C; by the very definition, C is inside. If I 

look at C intersection Y, look at the intersection of these sets, that is going to be inside S 

of C intersection Y. If I can show that this is a sigma algebra, then I would have that S of 

C intersection Y will be inside S of C intersection Y; one should try to show that this is a 

sigma algebra. 



(Refer Slide Time: 48:48) 

 

Let us try to show that that is a sigma algebra. Does the empty set belong to S of C 

intersection Y? Yes, because the empty set can be written as empty set intersection Y 

and empty set belongs to S of C. Similarly, the whole space. What is the whole space? 

The whole space here is Y; ((.)) S of C intersection Y; the claim is that this belongs to S 

of C intersection Y.  

That is true because Y can be written as X intersection Y and X is in the sigma algebra S 

of C; so, both these things belong. The second thing: let us look at a set E belonging to S 

of C intersection Y. I want to look at the complement of this, but what is the complement 

of this? If this set belongs to S of C intersection Y, that means this set E must be equal to 

some element A intersection Y where A belongs to S of C; that is by the definition. 

What is E complement? Keep in mind that we are looking at subsets of Y. What is E 

complement in Y? That is the same as E complement in Y. That means E intersection Y 

and that is the same as A complement intersection Y. That again belongs to S of C 

intersection Y. This collection S of C intersection Y is closed under complements. 

Finally, let us show it is closed under countable unions. If Ens belongs to S of C 

intersection Y, let us assume En because it belongs here, it will be some An intersection 

Y where Ans belong to S of C; that will imply union Ens is union An intersection Y. This 

belongs to S of C (Refer Slide Time: 50:55); so, it is intersection Y; it belongs to this. 



That implies that union also is an element; if En

(Refer Slide Time: 51:08) 

s belong to this, then the union also is an 

element of this.  

 

We have proved that this collection is a sigma algebra; this collection is inside this and 

so this will prove one-way inequality. We have to prove the other way round inequality. 

(Refer Slide Time: 51:33) 

 

Let us try to prove the other way round inequality; namely, the claim that S of C 

intersection Y is also a subset of S of C intersection Y; this is what is to be proved. The 

proof once again uses a similar technique. Let us write A; look at all those subsets E such 



that E intersection Y is an element in S of C intersection Y. Look at all those subsets in 

X such that their intersection in this Y is inside this sigma algebra.  

One shows that A is a sigma algebra and C is inside A. That means what? This will 

imply that because C is inside A, it is a sigma algebra; that will imply that S of C is 

inside A; that means for all elements in S of C if I take as intersection, that is going to be 

inside it; that will prove this required inequality (Refer Slide Time: 52:42). This claim is 

equivalent to proving these two things; namely, A is a sigma algebra and C is inside A. 

Let us observe why it is a sigma algebra. That is once again by similar properties. Let us 

show that this is a sigma algebra; let us try to show that E is a sigma algebra. 

(Refer Slide Time: 53:15) 

 

 



(i): does empty set belong to A? Yes, because empty set intersection Y is empty set 

which belongs to this because this is a sigma algebra (Refer Slide Time: 53:23); so, that 

is okay (Refer Slide Time: 53:25). Similarly, the whole space belongs to A; that will be 

okay. Second property: let us take a set E which belongs to A. What does that imply? E 

intersection Y belongs to S of C intersection Y, but this is a sigma algebra (Refer Slide 

Time: 53:244); so, it must be closed under complements and complements in Y. 

That means E complement intersection Y also belongs to S of C intersection Y. That 

implies that E complement belongs to A; the collection A is closed under complements. 

Similar arguments will show that it is closed under unions also; so, Ens belonging to A 

will imply En intersection Y belongs to this sigma algebra and hence implies union of 

Ens intersection Y also belongs to the sigma algebra. Hence, this set union En

This proves clearly that A is a sigma algebra (Refer Slide Time: 54:35). Clearly, C is 

inside A because E intersection Y in that case will belong to this. This will prove the 

required fact that we were trying to show (Refer Slide Time: 54:53); if I take a set Y 

inside X and restrict the collection C to subsets of Y and generate the sigma algebra, that 

sigma algebra is the same as first generating the sigma algebra and then restricting it to 

Y. 

 belongs to 

A (Refer Slide Time: 54:31).  

This is another way of generating more sigma algebras out of a given sigma algebra for a 

given collection. This is a kind of technique which you are going to use later on in our 

subject. For example, X will be the real line; we will look at Y; it will be an interval. We 

will look at the open sets in the whole space of real line and generate the sigma algebra; 

that is a Borel sigma algebra of subsets of real line; then, we can restrict them to the 

interval; it is the same as looking at the open sets in the interval and generating the sigma 

algebra out of it. 

There are various ways of generating sigma algebras. What we have done today is the 

following. We started with looking at algebras and described a special property of 

algebras. We said that in an algebra, any countable union can be represented as a 

countable disjoint union – a very important aspect of an algebra. Then, we moved on to 

looking at restricting the algebra to a set. We said if E is a subset of the set X and C is a 

collection, then you can restrict the class C to E and generate the algebra out of it. 



That is the same as first generating the algebra and then restricting ((.)) to it; that is 

another way of restriction of algebras. Then, we defined what is called sigma algebra 

subsets of it. It is a collection of sets which is closed under complements; it includes 

empty set and the whole space and is closed under countable unions, unlike algebra – 

algebra is closed under complements and finite unions only; every sigma algebra is also 

an algebra. 

We gave examples of a collection of subsets of a set X which is an algebra, but is not a 

sigma algebra; so, sigma algebra is something stronger than being an algebra. Then, we 

finally looked at how we can generate a sigma algebra out of a given collection of sets 

and that is called a sigma algebra generated. The process is similar to the algebra 

generated: take the intersection of all sigma algebras that include that collection and that 

will be the sigma algebra generated by it.  

The sigma algebra generated by the open subsets of a topological space is an important 

sigma algebra called the sigma algebra ((.)) Borel subsets of that topological space. That 

is same as the sigma algebra generated by all closed subsets of the topological space; that 

is an important thing. Finally, we proved that you can take any collection restricted to a 

set and generate the sigma algebra; that is same as generating a sigma algebra first and 

then restricting it to the set. Next time in the next lecture, we will continue the study of 

classes of subsets of the set X and we will look at another important class called the 

monotone class of subsets of a set X. Thank you. 


