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Welcome to lecture 23 on measure and integration. In the previous lecture, we had 

started looking at the space of Lebesgue integrable functions on the interval a b. We had 

defined the notion of L 1 metric on it and we had proved that under the L 1 metric, L 1 a 

b is a complete metric space. 

We will continue the study of this space L 1 a b, a bit more and today, we will show that 

the space of continuous functions on the interval a b is dense inside the space of 

integrable functions under the L 1 metric. 

So, let us just recall the proof of the fact that the space L 1 a b under the L 1 metric is 

complete. 
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So, we defined the notion of L 1 metric as follows - for the functions f and g in L 1 of a 

b, we defined the distance between f and g to be the L 1 norm of f minus g; so this 1 



indicates what is called the L 1 norm which we had defined last time. So, this is precisely 

equal to the L 1 norm or the distance between f and g is equal to integral of mod of f 

minus g d lambda over the interval a b. We showed that, if you identify the functions 

almost everywhere; that means, if you do not distinguish between functions f and g 

which are equal almost everywhere; L 1 of a b then this becomes a metric and the space 

L 1 a b is a complete metric space under this metric. 

I just want to go through the over the proof main steps of the proof once again to 

emphasis something important as follows: 
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So, let us go through the steps again to show that this L 1 of a b is complete, what we 

have to show is given a Cauchy sequence f n in L 1 of a b; we have to show that there 

exist a function f in L 1 of a b, such that f n converges to f in the L 1 norm. 

So, to do that, we said it is enough to show that the Cauchy sequence f n converges in L 

1 metric; it is enough to show that there is a subsequence of f n which is convergent in L 

1. 

So, this is a general fact about metric spaces namely - in any metric space given a 

Cauchy sequence, a Cauchy sequence converges if and only if there is a subsequence of 

it which is convergent; so this is the fact about metric space - is we are going to use here 



to prove that L 1 of a b is complete, given the Cauchy sequence f n, we will try to 

construct a subsequence of f n which is convergent in L 1 norm. 

So, as a first step using the Cauchyness property of f n, we construct a subsequence f n k 

of f n, such that the L 1 norm of f n minus f n j is less than 1 over 2 to the power j for n 

bigger than or equal to n j. This was done basically the Cauchyness says that the distance 

between f n and f m goes to 0 as n and m go to infinity so after some stage the difference 

between f n and f m can be made as small as you want so by using induction we 

construct this subsequence such that f n minus f n j L 1 norm is less than 1 over 2 to the 

power j. 

So, what we wanted to note down that in this step 1 we have not use anywhere the fact 

that we the functions are defined over the interval a b or real line we are just use a 

general fact about Cauchy sequences. 
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In step 2, we said that the look at the Cauchy sequence f n k that we have just 

constructed this has the property that the L 1 norm summation of the L 1 norms of f n 1, 

that is the first term plus the consecutive differences the norm of f n j plus 1 minus f n j is 

a convergent series. This follows from step 1 because in the step 1 the difference 

between f n and f n j so f n n plus 1 j minus f n j less than 1 over 2 to the power j so that 

clearly says that this sum of the norms will be less than summation 1 over 2 to the power 

j which is finite so again this follows from step 1 and we are not using anywhere the fact 

that our underlying space is the real line or the interval. 



And now in step 3, we want you to conclude that the function f n 1 x plus summation of f 

n j plus 1 x minus f n j x exists almost everywhere. If you recall the proof of this was 

from the fact using the series form of the Lebesgue dominated convergence theorem 

namely, whenever you have given a series of L 1 functions and if the L 1 norms are finite 

then the functions series itself is convergent almost everywhere so again here we do not 

use the fact that we are over the real line. 
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So, this step 3 also is valid and hence as a consequence of that theorem of Lebesgue 

dominated convergence theorem in the series form we get that f is L 1 and the L 1 norm 

or L 1 and the integral of f is equal to integral of sum of the corresponding integrals and 

as a consequence of this it follows that f n j converges to f in L 1. 
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So, what we are saying is in all this steps we have not used anywhere the fact that we are 

working over the real number system so this proof carries over to any measure space, 

complete measure space X S mu and that means we can replace the real line by any set X 

and the sigma algebra Lebesgue measurable sets by a sigma algebra of subsets of X and 

a measure mu such that X S mu is a complete measured space. We can define the space 

of mu integrable functions, we can define L 1 of X the space of integral functions and the 

notion of the L 1 norm make sense for any function f on the measures on the space X if it 

is mu integrable, we can define the L 1 norm of this 

So, what we are saying is that the L 1 norm make sense for any L 1 metric make sense on 

any in the space of Lebesgue on the space of integrable functions on any measured space 

X S mu which is complete and as we have seen just now in the proof of the theorem, we 

do not use anywhere the fact that we are over the real line we use general statements 

about metric spaces or we use the series form of the Lebesgue dominated convergence 

theorem. 

So, as the result I am saying that the same proof which we have worked out that saying L 

1 a b is complete works very well for the space L 1 of X S mu where, X S mu is any 

measure space so that gives us the riesz-fischer theorem. For a complete measure space 

X S mu saying that the space of integrable functions on a complete measure space under 

the L 1 metric is always complete 



(Refer Slide Time: 07:56) 

 

and so that is one observation and now, let us go over to the fact we wanted to prove that 

L 1 a b which is complete is in fact the completion of the space R a b of Riemann 

integrable functions on a,b. 

So, for to do that what we have already observed that R a, b is a subset of L 1 of a, b. We 

had proved the theorem that any function which is Riemann integrable is also Lebesgue 

integrable and the Riemann integral is same as the Lebesgue integral. 

So, R a, b is a subset of L 1 of a, b L 1 of a, b is complete to show that this is the 

completion of R a, b; we want to show that R a, b is a dense subset of L 1 of a, b in the L 

1 metric so the denseness of R a, b is to be proved in L 1 of a, b. 

In fact, we will prove something much stronger remember that every continuous function 

on the interval a b is also Riemann integrable so the space C a, b of continuous functions 

on the interval a ,b is a subset of the space of Riemann integrable functions and we will 

show that C a, b itself is dense in L 1 of a ,b. 

That means for any function f in L 1 of a, b and any number epsilon bigger than 0 we 

want to show that there exist a function g belonging to C a, b a continuous function such 

that the norm of f minus g is less than epsilon so that will prove that c a, b is complete in 

L 1 of a, b. 
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So, we will do it in steps, step 1 is that given that function f in L 1 of a, b which we want 

to approximate by a continuous function, it is enough to prove the theorem for functions 

in L 1 a, b such that f is bigger than or f is a nonnegative and that is because if f belongs 

to L 1 of a, b then, we know that f can be written as f plus the positive part minus the 

negative part of the function and f belongs to L 1 of a, b if and only if both f plus and f 

minus belong to L 1 of a, b. 



So, in case if nonnegative functions in L 1 of a, b can be approximated, so if there is a 

function g 1 belonging to C a, b and a function g 2 belonging to C a, b continuous 

functions such that the norm of f plus minus the continuous function g 1 L 1 norm is less 

than epsilon and norm of f minus g 1 is also less than epsilon, then this will imply that 

the norm of f minus g 1 minus g 2 L 1, which will be equal to norm of f plus minus f 

minus minus g 1 g 2 and that will be less than or equal to norm of f plus minus g 1 plus 

norm of using the triangle inequality property of the norm so f minus minus g 2 and that 

will be less than epsilon plus epsilon. 

So, if you call this function as g so what we are saying is that if nonnegative functions in 

L 1 can be approximated by continuous functions, then any function f in L 1 can be 

approximated because f can be split as a difference of two nonnegative functions in L 1. 
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So, this is step 1 namely that it is enough to prove the theorem for functions which are 

integrable and which are nonnegative so this is the first observation that showing that C 

a, b is dense in L 1 of a, b; we can assume that the function f in L 1 a b is a nonnegative 

function so this is a first simplification or first step. 

The second step says that for a nonnegative function f in L 1 a, b. So, observation is that 

for a nonnegative integrable function there exists a non-negative simple measurable 

functions in L 1 a, b such that the norm of f minus s is less than epsilon. 
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So, what we are saying is that if f is a nonnegative integrable function, then it can be 

approximated by a nonnegative simple measurable function, which is integrable so let us 

prove this step. How does we do that so? We are given that f is nonnegative and f 

belongs to L 1 of a b 

now, because f is nonnegative and it is integrable. So, f is nonnegative measurable so f 

bigger than or equal to 0, f measurable implies there exist a sequence s n of nonnegative 

simple measurable functions, simple measurable functions such that s n increases to f but 

then s n is less than or equal to f and all are nonnegative so that implies that s n also 

belongs to L 1 of a, b. 

So, because s n is dominated by f they are nonnegative functions so that implies as, we 

have seen earlier that s n also will belong to L 1 of a, b and also because s n is increasing 

to f so integral of f d mu can be written as limit n going to infinity integral of s n d mu. 

right That is by the definition of the integral, for a nonnegative measurable function, the 

integral is the limit of the approximating sequence of nonnegative simple measurable 

functions 

but note that each s n integral of s n is less than or equal to integral of f. So, we can write 

that actually as absolute value of f minus s n d mu that will be equal to integral of f d mu 

minus integral of s n d mu because f minus s n is nonnegative, so its absolute is same as f 

minus s n so and that integral is equal to this and that goes to 0. 
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So, that means we have got a sequence of simple measurable functions nonnegative 

simple measurable functions, which are in L 1 and so this is L 1 norm; so integral of mod 

f minus s n goes to zero that means the norm of f minus s n L 1 norm goes to 0. 
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So, once it happens so that means for any epsilon we can choose a n naught such that f 

minus s n naught will be less than epsilon so implies for every epsilon bigger than 0 there 

is a n naught such that norm of f minus s n naught will be less than epsilon so that proves 



the second step that close to a integrable function f which is nonnegative there is a 

nonnegative simple measurable function close to it close in the sense of L 1 norm. 

So, as step 3 so that means what that means in order to approximate f by a continuous 

function we can approximate it is enough to approximate nonnegative simple measurable 

functions in L 1 by a continuous function because f can be approximated by a simple 

nonnegative simple measurable function in L 1 and if nonnegative simple measurable 

function can be approximated then will be through(()) 

So, what we have shown till now is that the nonnegative simple measurable functions in 

L 1 are dense in L 1 that itself is of interest a result or of interest is independent result of 

interest that means for a integrable functions the nonnegative simple functions are dense 

close to it and using positive negative part this will give you that in the space of L 1 of a 

b if you look at the simple integrable functions they are dense in L 1 norm 
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So, for us our theorem, so it is enough to prove that for a simple non negative simple 

integrable function L 1, of a b there exists a function g continuous function close to it so 

that is what we have to prove our theorem. 
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So, let us we have got a simple s, which is simple integrable non negative function so 

that means what that means this s will look like sigma a i indicator function of sets a i i 

equal to sum 1 to n because this is simple nonnegative. So, a is bigger than or equal to 0 

and this sets A i’s are subsets of a b of course they are Lebesgue measurable; they are 

disjoint so A i intersection A j is empty and the union of A i’s is equal to a b i equal to 1 

to n. 

So, saying that s is a nonnegative function which is a nonnegative simple measurable 

function, which is in L 1, so nonnegative simple means it is of this type and obviously 

this becomes integrable so this must be of this form right. 

So, what we want to show is that to show there exist a continuous function g on a b such 

that norm of s minus g is less than epsilon so this is what we have to show. 

Now, s is a linear combination of indicator functions of A I, so our claim is that enough 

to show. So, to prove that this claim it is enough to show that for every A inside a b of 

course A Lebesgue measurable there exists a function g which is this C a b such that the 

L 1 norm of the indicator function of a minus g is less than epsilon, saying this is enough 

because if this is true for every i so the reason is because if true then what we will do for 

every i we will approximate the indicator function of A .i 
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So, for every i find g i belonging to C a b such that the L 1 norm of the indicator function 

of A i minus g i is less than epsilon. So, we will do that for every i equal to 1 to up to n, 

then will imply that if i define g to be equal to sigma a i of g i a i times the function g 

i;then this function bill is a continuous function because it is a finite linear combination 

of continuous function. So, this is a continuous function and the L 1 norm of sigma a i 1 

to n of indicator function of a i minus this g and this is s so the norm of s minus g L 1 

norm will be less than or equal to sigma mod a i norm of L 1 norm of indicator function 

of A i minus g i. 

So, that is by triangle inequality, g is a sum of six sigma a i g i. So, i can say it is less 

than or equal to absolute value 1 to n of mode a i times this and each one of them. So, 

this less than sigma i equal to 1 to n mod a i and this each one of them is less than 

epsilon; so it is less than this which is a small quantity, so you can modify this epsilon 

suitably. 
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So, what we are saying is to prove that for every nonnegative simple measurable function 

s, there is a continuous function g close it in the L 1 metric.  It is enough to show that for 

every indicator function of a set A in a, b, there is a function, continuous function close 

to it so that is what we have to prove so let us do that. 



(Refer Slide Time: 21:57) 

 

So, let A be a subset of a, b and A Lebesgue measurable to show there is a continuous 

function close to it. So, to prove that let us make a observation here to show that there 

exists a continuous function g close to that so that means, C of a b such that norm of 

indicator function of a minus g is less than epsilon so this is what we have to show. 

So for that let us observe one thing, so note which you can call it as a lemma, which we 

already proved while dealing with the Lebesgue measure but let us recall the proof of 

this once again that look at the Lebesgue measure of the set A.  A is a subset of a, b so it 

is a finite quantity and the Lebesgue measure what is it equal to Lebesgue measure of the 

set A because A is Lebesgue measurable, it is same as the Lebesgue outer measure of A 

by definition and that is equal to the infimum of given the set a cover it by disjoint 

intervals I j some finite number of them I j is our pairwise disjoint 

and look at the sums of these intervals, lengths of these intervals I j 1 to infinity and take 

the infimum of all such things so lambda star of A, which is same as the Lebesgue 

measure of A is nothing but the infimum of the sums of the lengths of those intervals I 

j’s which cover A and we can assume that they are pairwise disjoint. 

So, that is what is being that is so the definition and now this being finite because it is 

inside a, b so implies for every epsilon bigger than 0 I can find intervals I ns there exist 

intervals I n’s intervals n equal to 1 to and so on such that the set A is contained in union 

of I n’s n equal to 1 to infinity and I n’s are pairwise disjoint so I n intersection I m is 



equal to empty and it is the infimum so I can make lambda of lambda star of A which is 

same as lambda of A plus epsilon should be bigger than summation of sorry lambda of A 

plus epsilon cannot be the infimum so that must be bigger than summation of lambda of I 

n’s right 

So, that is by the definition that lambda star of A or lambda of A is the infimum of 

certain things, so lambda of A plus epsilon cannot be the infimum, so it must be bigger 

than some terms over which you are taking the infimum so this is true. 
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So that means and this is finite so that implies- so here is the observation that this sigma 

lambda of I n’s n equal to 1 to infinity is finite right because lambda star of A which is 

lambda of A, which is finite is inside a b so this is finite. 

So, we can choose so this is a series, which is convergent.  We can choose a stage say n 

naught such that the sum from n naught plus 1 to infinity of lambda I n is small, so let us 

say it is less than say again epsilon. 

So, now define so then let us look at the set A minus union I n n equal to 1 to n naught. 

Look at this so this is a subset of A, is contained in; so recall A is contained in the union 

of I n’s.  So, I can say this is subset of union of n equal to 1 to infinity of I n’s because A 

is contained in this minus union n equal to 1 to n naught of I n’s about that means, this is 

equal to union of I n’s n equal to n naught plus 1 to infinity, so this is that is same as this. 



So, that implies by the sub additive property that lambda of A minus, the union of the 

intervals I n from 1 to n naught will be less than summation of lambda I n n equal to n 

naught plus 1 to infinity and that we know is less than, so here is the property 1 so by 1 

this is less than epsilon. 
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So, the difference of the measure, Lebesgue measure of the difference of A minus this 

finite union of disjoint intervals is less than epsilon also. say look at the sets union of 1 to 

n naught the intervals I n minus A that is contained in union of n equal to 1 to infinity I n 

because instead of n naught, we will take it to infinity minus A and everything is finite. 

So, this implies all I got finite Lebesgue measure.  So, this implies that the Lebesgue 

measure of union of I n’s n equal to 1 to n naught minus A.  So, Lebesgue measure of 

this set will be less than or equal to the Lebesgue measure of union of I n’s n equal to 1 

to infinity minus Lebesgue measure of A, which is equal to summation less than or equal 

to summation of lambda of I n n equal to 1 to infinity minus lambda of A. and that we 

know that we know is less than epsilon because that is how we constructed the sequence 

I n I n’s cover A and the difference between the summation of lambda I n’s minus 

lambda of A is less than epsilon. 

So, we have got that the Lebesgue measure of Lebesgue measure of A minus, the finite 

union of intervals 1 to n naught is less than epsilon.  Lebesgue measure of the finite 

union minus A is less than epsilon, so that together they imply that the Lebesgue 



measure of A symmetric difference between this set which is a finite union of intervals 

disjoint intervals 1 to n naught is less than 2 epsilon. 
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So, to make things look very nice what we could have done is given an epsilon. we kind 

of selected here when we got this tail of the series, we could have made it less than 

epsilon by 2 and in the beginning also when we got when we took outer measure being 

finite and covered by so we could have met that inequality less than epsilon by 2 in the 



starting itself so saying lambda of A is finite so there is a sequence of intervals covering 

such that lambda star of A plus epsilon by 2 instead of epsilon 

Similarly in the second one also you could have met epsilon by 2, then we would have 

gotten this as epsilon by 2 and we would have gotten this by epsilon by 2, So, we have 

gotten it epsilon that is only a cosmetic change in our proof but the basic fact is what we 

are saying is so what we have shown is the following that if so. This is the important 

thing that we have shown, so we have shown that if A is contained in a to b given, 

epsilon bigger than 0 there exist disjoint interval I 1 some I n naught such that the 

Lebesgue measure of the set A symmetric difference between this union of the intervals. 

I n’s 1 to n naught is less than epsilon, so this we had proved earlier also for general 

measure, so I have repeated the proof for the Lebesgue measure because it is good to 

revise things anyway. 
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So, using this but now, let us look at what does this statement last statement mean; that 

means, this thing is nothing but integral of the indicator function of A minus the 

indicator function of sets a I n’s which are pairwise disjoint 1 to n naught absolute value 

of this. So, this quantity is precisely equal to this so what we are saying is the indicator 

function of A delta B is absolute value of indicator function of A minus indicator 

function of B. So, this is general fact, so I am using that here so Lebesgue measure of a 

set is the integral of the indicator function and the indicator function of the symmetric 



difference is the indicator function of the difference of absolute value of difference so 

that is less than epsilon. 

So, as a consequence, what we are saying is that given a set A, inside the interval a, b, 

we can find finite number of disjoint intervals I n such that this property is true but now, 

note that these are disjoint intervals. So, this is equal to the indicator function of A minus 

the summation indicator functions of I n’s n equal to 1 naught n naught d lambda so that 

is less than epsilon. 

So, what we have proved that if you look at the indicator function of a set A, inside the 

interval a, b then there are disjoint intervals I n such that the indicator function of A 

minus the sums of the indicator function of these intervals I n’s will be less than epsilon. 

Now what we want you to approximate so that so this is same as the L 1 norm, so we 

have got L 1 norm of the indicator function of A minus the function, which is a sum of 

the indicator functions of I n’s 1 to n naught that is less than epsilon L 1 norm; 

but our aim was to approximate the indicator function of A by a continuous function. We 

are saying that the indicator function of A is close to sum of indicator functions of 

intervals, so what does that mean that means, if I can approximate each one of these 

functions, which are indicator functions of intervals inside the interval a, b and a finite 

number of them by a continuous function., then I am through So, the next step is to show 

that so let us write it as further, we claim that if I is a interval; if say I is a interval inside 

the interval a, b then there exist a continuous function g C a b such that with the property 

that norm of the indicator function of the interval I minus the continuous function is less 

than epsilon. 

So, once we are able to prove this fact for each interval I n will have a continuous 

function take the sums of those so they will approximate the sum of the indicator 

functions of intervals and that in turn approximates the indicator function of A and our 

proof will be complete. 
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So, what we want to show is that given a interval inside, so given the interval I so here is 

a and here is b; we are given a interval inside it so I just want to draw a picture and show, 

what is the proof going to be so here is the interval I inside it let us say it is c to d. 

So, the indicator function of A indicator function, so we have got the indicator function 

of c to d.  So, let us look at so this is going to be the indicator function of so this height is 

1 so let us just draw this is 1., 

So, the indicator function of the interval c to d looks like it is 0 here in a to c and c to d it 

is going to be 1 and d to b it is going to be 0 again here it does not matter what are the 

values at the point c and d. 

Now, we want to approximate this by a continuous function, so it is obvious what we 

should do to make this function continuous and such that the area below the graph of this 

function does not exceed too much. 

So, let us take a point here, which is c minus 1 by n for any n and let us take a point here, 

which is d plus 1 by n so take a this point and now what we do is we take the function. 

So, I am going to define a function g n. What is the function g n?  It is 0 in a to c minus 1 

over n in this portion, it is 0 and in the portion between c minus 1 over n to c it is going 

to be the line joining, so that is the line segment so I am describing the graph of this so 



the line segment and then it is 1 in the interval c to d and then again from d where the 

discontinued is coming I join it by the point d plus 1 over n. 

So, it is the again the line joining that between d to d plus 1 over n and 0 remaining so 

what I am saying is if you are given the indicator function of a sub interval of a b then I 

can always make it continuous.  I can approximate by a continuous function so what will 

be the extra thing, we will be adding we will be adding the areas of these two rectangles. 
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So, if I define this as a continuous function g n then, what is that L 1 difference so the 

integral of mod of the indicator function of the interval I which is c to d minus this 

continuous function g n d lambda will be equal to the areas of these two rectangles. 

Height is 1, so it is 2 by n because each triangle because this length is 1 by n, this height 

is 1 so half base into height; so it is n by 2 actually so multiply by 1 by 2 so that is 1 by n 

and that goes to 0 as n goes to infinity. 
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So, that will prove the fact that the close to indicator function of a interval there is a 

continuous function and hence close to the indicator function of any set inside the 

interval a, b there is a continuous function. and that will and Finite linear combinations 

of the indicator functions are the simple function, so that will prove the fact that for a 

nonnegative simple function there is a continuous function close to it. 

So, step 4, which was that if is a nonnegative simple function of this form, then close to 

it right so is a linear combination.  So, indicator function a i chi A I, I am just repeating 

the last step again so because each one of them can be approximated if each one of them 

can be indicator function of a intervals can be approximated then the simple function can 

be approximated. 
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So, the problem came to approximating indicator functions of sets inside the interval a, b 

and for that we said we will use a lemma which says that given epsilon bigger than 0 

there exist a set F, inside a, b, which is a finite disjoint union of intervals such that the 

Lebesgue measure of A symmetric difference f is less than epsilon. 
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So, using that we will get that indicator function of A minus the indicator function of this 

set F, which is a finite disjoint union of intervals and so problem reduces to 

approximating indicator functions of intervals inside the given interval a, b and for that 

we just extrapolate by piecewise linear functions and get the required thing. 
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So, indicator function of a interval there is a continuous function close to it so for that we 

just now said look at the graph of so here is a to b.  So, look at some point close it c 

minus 1 over n or c minus 2 by n and take this linear piecewise linear function, which is 



a continuous function and that will approximate in L 1 norm the given function the 

indicator function of a interval. 

So, that will prove the fact namely that close to L 1 function there is a continuous 

function.  I just want to discuss the proof of this theorem, in fact, we have almost use all 

the results on measures and on integration that we have proved till now so and this is the 

technique which we use to prove things about integrable functions. 

So, what we wanted to show was that given a function f, which is integrable on the 

interval a, b there is a continuous function on the interval a, b such that the L 1 norm of 

the difference is small that means every integrable function on the interval a, b can be 

approximated by a continuous function. 

So, what are the first step of our first step in our proof was that since every function f can 

be written as the positive part minus the negative part and f integrable implies if and only 

if the positive part and the negative part are integrable ;we want to approximate f by a 

continuous function, which is the difference of two nonnegative integrable functions f 

plus and f minus and if you can approximate each one of them separately then we can 

combine them to approximate the function f. 

So, the first step was namely, we can assume without any loss of generality that our 

integrable function is nonnegative that is 1 so the next step is so if we take the function f 

to be nonnegative and integrable how is the integral of nonnegative functions defined. 

They are defined by looking at limits of increasing sequences of simple measurable 

functions and taking their integrals so we go back to the definition of integral of a 

nonnegative function. 

So, f nonnegative integrable implies f is nonnegative measurable, so as a consequence or 

the definition, there exist a sequence of nonnegative simple measurable functions. Such 

that call that s n such that the sequence s n of simple nonnegative simple measurable 

functions increases to the function f, but if s n is increasing to f that means s n is less than 

or equal to f and f is nonnegative so that implies each s n is nonnegative and integrable. 

So, s n is a sequence of simple nonnegative integrable functions on the interval a b and 

the integral of s n increases to integral of f that means that is equivalent to saying that s n 

converges to f in L 1 norm. 



So, given f a nonnegative integrable function, we have a sequence of nonnegative simple 

integrable functions in converging to it in the L 1 norm. So, this is a fact that simple 

functions in L 1 of a b are dense but we want to go a step further so look at a simple 

function. Now, so to approximate f, which is nonnegative, we have got a sequence of 

simple functions converging to it in L 1 that means close to f, which is nonnegative 

integrable. There is a simple integrable function, so if you can integrate if you can 

approximate simple nonnegative simple integrable functions by a continuous function 

then we are through 

But a nonnegative simple function is a finite linear combination nonnegative linear 

combination of indicator functions of sets so and if you can approximate each indicator 

function by a continuous function, then the corresponding linear combination of those 

continuous functions will approximate the simple function. 

So, the next step is that to show that close a simple integrable functions can be 

approximated by a continuous function ; it is enough to show that the indicator function 

of a set A inside a b is can be approximated by a continuous function. 

So, it comes down to saying that look at a set A, which is Lebesgue measurable inside 

the interval a b and we want to approximate the indicator function of this set by a 

continuous function and here comes the property of the Lebesgue measure; that the 

Lebesgue measure of a set A inside a b that means it is a finite set of finite Lebesgue 

measure. 

We can approximate this set by finite disjoint union of intervals and what does that 

approximation mean, it means that given a set A, inside the interval a b, which is 

Lebesgue measurable there exist a set, which is a finite disjoint union of intervals such 

that the Lebesgue measure of the set A and the symmetric difference of this finite 

disjoint union is small is less than say epsilon. 

And but saying that The Lebesgue measure of the symmetric deference A with a finite 

disjoint union of is small is same as saying that the L 1 norm of the indicator function 

minus the difference between the L 1 norm of the indicator function and the linear 

combination of the indicator functions of those disjoint intervals is small. 



We want to approximate the indicator function by a continuous function so and close to 

it is a finite linear combination of indicator functions of intervals so the problem reduces 

to approximating the indicator function of an interval, inside the given interval a b by a 

continuous function and that is achieved by making the indicator function piecewise 

linear. 

So, this is the step in effect we have used all most all the theory in proving this theorem, 

so thus theorem prove that C a b is dense. So,  that proves the fact that C a b is dense in L 

1 of a b and C a b is the subset of R a b. So, that will prove that R a b is dense in L 1 of a 

b and hence as the result we get that L 1 of a b is the completion of the space of R a b of 

of course of C a b so that proves the theorem. 
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So, very important result that L 1 of any interval a b is complete and as we observed L 1 

of any subset also will be complete if you look at the proof and it is a completion of R a 

b. 

Let us look at some more properties of these functions,  so let us look at a function f in L 

1 of R so f is a integrable function. 

For real number h and k, let us define f lower h of x namely equal to f of x plus h ,so the 

value of this new function f lower h at x is the value of at the translated point x plus h. 

So, this will call as a translation of the function f and similarly let us define the function 



phi, which is defined as phi of x to be f of k times x plus h for any x that means you 

multiply the number x by k and add h to it translate and then take the value of this so 

claim is both these functions f h and phi are again integrable. The integral of this 

function phi is absolute value of k times the integral of f and the integral of the translated 

function f h is same as the integral of the original function f. 

So that means the space L 1, if you make a translation or a magnification then these are 

again leave the functions in the space L 1 and with these properties so these can be easily 

proved on the lines that we have proved just now. 
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So, let us try to prove that integral of f h x d lambda x is equal to integral of f x d lambda 

x so we want to prove for every f in L 1. 

So, again we will that simple function technique, so we want to prove for every f in L 1. 

So, note, we can assume so step 1 show true for f nonnegative show it is true for f 

nonnegative because once it is true for f nonnegative I can look at the positive part and 

the negative part. 

So, show it is for and do how do you show it is true for nonnegative.  So, step 2 show 

true for a simple function s belonging to L 1 s nonnegative simple because every 

function can be approximated by nonnegative simple functions. Nonnegative simple 

functions are indicator functions of sets, so step 3 show for f equal to the indicator 



function show for indicator function and what is that that means we want to show that 

lambda so indicator function of A x plus h d x d lambda x is equal to integral of indicator 

function of A d lambda but that is same as saying showing that lambda of A plus h or A 

minus h does not matter is equal to lambda of a for every h and that is the property of the 

Lebesgue measure that it is translation invariant. 
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So, what we are saying is this property is true for indicator functions, so it will be true 

for nonnegative simple functions. So, by taking limits it will be true for nonnegative 

integrable functions and then by positive and negative part it will be true for all functions 

in L 1 and a similar result will work for second identity namely if I multiply so f of k x 

let us just look at d lambda x is equal to mod k times mod f of mod k times f of x d 

lambda x so that again by the same technique let us look at what happens when it is a 

indicator function so lambda of multiplication k times a set E what is it equal to and we 

look at this via outer measures one can show that this is same as mod k times lambda of 

E. 

So, you show it for all sets E, which are Lebesgue measureable, then this is equal to the 

indicator function and then finite linear combination of indicator functions and so on. 
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So, ask the reader to verify this by the simple function technique, so these are properties 

of Lebesgue integrable function. So, what we have done is that we specialized the space 

of integrable functions on the real line and deduced some nice properties ;one of the 

properties was that the space of Riemann integrable functions is dense in the space of 

Lebesgue integrable functions and so in one sense this is very nice and so. 

So, this completes the process of extension of measures and defining integrals with 

respect to measures and their properties in the next few lectures. We will start looking at 

how does one construct, what are called product measure spaces and how does one 

integrate on product measure spaces. 

So, this is an important part of measure theory that means measure and integrations on 

product spaces, we will start looking at in the next lecture. 

Thank you. 


