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Properties of Integrable Functions and Dominated Convergence Theorem 

Welcome to lecture 30 on measure and integration. In the previous lecture, we had 

started defining what is called the notion of a function to be an integrable function and 

then we started looking at some of the properties of integrable functions. 

(Refer Slide Time: 00:45) 

 

Let us just recall what is an integrable function and then we will start looking at various 

properties of these integrable functions. We will prove one important theorem called 

dominated convergence theorem. 



(Refer Slide Time: 00:53) 

 

If you recall, we said a measurable function f on X to extended real ((.)) measurable 

function f is said to be integrable with respect to mu and written as mu integrable if both 

the integral of the positive part of the function and the negative part of the function are 

finite. We say f is mu integrable if integral f plus into d mu and integral f minus into d 

mu both are finite numbers. In that case, we say the integral of f is equal to integral of f 

plus minus integral of f minus. 

Let us just once again emphasize saying that function is mu integrable if and only if both 

f plus and f minus are having finite integrals and the integral of f is written as integral of 

f plus minus integral of f minus. The class of all integrable functions on the space X, S, 

mu is normally denoted by L1 – capital L lower 1 – of X, S, mu or sometimes we drop S 

and mu if we are clear from the context what are the sigma algebras or what is the 

measure; sometimes we just emphasize mu because we know what is X and what is S. 

These are various notations used for denoting integrable functions – L1 of X, S, mu or L1 

bracket X or L1 bracket mu; this is the space of all mu-integrable functions. 



(Refer Slide Time: 02:49) 

 

We started looking at the properties of these functions. The first important thing we 

observed was a function f which is measurable is integrable if and only if mod f which is 

a nonnegative function is integrable. That means to check whether a measurable function 

is integrable or not, it is enough to look at the integral of the function mod f and see 

whether that is finite or not and this is always true; for the integrable function, integral of 

mod f integral mod of the integral of f into d mu is less than or equal to integral of mod f 

into d mu.  

This is an important criteria; this is an equivalent way of defining integrability of a 

measurable function, namely mod f is measurable. This is not equal; this is wrong here; it 

should be less than or equal to; mod of integral f into d mu is less than or equal to; this is 

a typing mistake here; this should have been less than or equal to integral of mod f into d 

mu.  

Let us recall some of the other properties that we had proved. We said if f and g are 

measurable functions and mod f is less than or equal to g of x for almost all x with 

respect to mu and g is integrable, then f is also integrable; that means if a function f of x 

is dominated by an integrable function, then that measurable function automatically 

becomes integrable. 



(Refer Slide Time: 04:43) 

 

We also proved the following property: if two functions f and g are equal almost 

everywhere and one of them is integrable, say f is integrable, then the function g is also 

integrable and integral of f is equal to integral of g. That essentially says that the 

integrable of the function does not change if the function is changed, if the values of the 

function are changed almost everywhere.  

So, f is equal to g almost everywhere; f and g are measurable functions; one of them, say, 

f is integrable implies g is integrable and the integrable of the two are equal. We also 

proved the following property: if f is an integrable function and alpha is any real number, 

then alpha times f is also integrable and the integral of alpha f is equal to alpha times the 

integral of f. We continue this study of properties of integrable functions. 



(Refer Slide Time: 05:53) 

 

Next we want to check the integrability property; if f and g are integrable functions, then 

we want to show that f plus g is also integrable and integral of f plus g is equal to integral 

f plus integral g. 

(Refer Slide Time: 06:13) 

 

To prove this property, let us look at what we are given. We are given that f and g are 

integrable functions; that is, integral mod f into d mu is finite and integral of g into d mu 

is also… absolute value of g with respect to mu is also finite. To check whether the 

function f plus g is integrable or not, we have to look at the integral of f plus g, the 



absolute value, and show that integral of absolute value of f plus g is also finite. That 

follows easily because absolute value of f plus g is always less than or equal to absolute 

value of f plus absolute value of g.  

All are nonnegative measurable functions. So, using the property of the integral for 

nonnegative measurable functions, this implies that integral of mod f plus g into d mu is 

less than or equal to integral of mod f plus mod g into d mu and that by linearity is the 

same as integral mod f into d mu plus integral mod g into d mu. We are given that both 

of them are finite; so, this is finite (Refer Slide Time: 07:35). It implies that f plus g is 

integrable. 

(Refer Slide Time: 07:54) 

 

To compute the integral of f plus g, we have to go back to the definition of the integral. f 

and g are integrable; that implies integral of f plus d mu is finite, integral of f minus d mu 

is finite, integral of g plus – the positive part of g – is finite, and integral of g minus d mu 

is finite. We have to show that integral (f plus g) plus into d mu is finite and integral (f 

plus g) minus into d mu is finite; these two properties we have to show. To show this, 

somehow we have to relate the positive part of f plus g with the positive part of f and 

positive part of g and similarly, the negative part of f plus g with the negative part of f 

and negative part of g; that is done as follows. 



(Refer Slide Time: 09:04) 

 

What we do is look at f plus g. By definition, we can write it as f plus g positive part 

minus f plus g the negative part; that is by the definition of the positive part and the 

negative part of a function. Also, f plus g we can also write it as shown; decompose f 

into positive part and into the negative part – that is, f plus minus f minus – and similarly 

write g as g plus minus g minus. 

From these two, it follows that integral of f, sorry not the integral; from this, it follows 

that f plus g positive part minus f plus g the negative part is equal to f plus minus f minus 

plus g plus minus g minus; from these two equations, it follows this is so. Now, what we 

do is all the negative terms we shift on the other side of the equation; this implies that (f 

plus g) plus plus f minus plus g minus is equal to f plus plus g plus from here and this 

term on the other side will give me plus (f plus g) minus.  

We also rearrange the terms; now, you observe that the left-hand side is a nonnegative 

function and the right-hand side is a nonnegative function. By the properties of integrals 

for nonnegative functions, this implies that integral of (f plus g) plus into d mu plus 

integral of f minus into d mu plus integral of g minus into d mu so, that is the integral of 

the left-hand side, is equal to integral of f plus into d mu plus integral g plus into d mu 

plus integral f plus g minus into d mu. 

From this equation by using the properties of integral for nonnegative functions, the 

linearity property, the integral of the left-hand side is equal to integral of the right-hand 



side (Refer Slide Time: 11:46). Integral of the left-hand side consists of integral of (f 

plus g) plus plus integral of f minus plus integral of g minus and that is equal to integral 

of f plus plus integral of g plus plus integral of (f plus g) minus.  

Now, we observe that in this equation all the terms are finite quantities or real numbers; 

that is because f plus g we have already shown is integrable; this first integral of (f plus 

g) plus is finite, integral f minus is finite and similarly all the terms are actually 

nonnegative real numbers. We can again manipulate them and shift terms on the left-

hand side and right-hand side. What we will do is this term (f plus g) minus on the right-

hand side (Refer Slide Time: 12:42) we will bring it on the left-hand side and the terms 

integral f minus into d mu and integral g minus into d mu we shift it on the right-hand 

side; that gives us the property. 

(Refer Slide Time: 12:58) 

 

Shifting implies that integral of (f plus g) plus into d mu minus this term will give you 

integral (f plus g) minus into d mu; this term we have shifted (Refer Slide Time: 13:10). 

Shift these two terms on the other side. It is equal to integral f plus into d mu; that is this 

term and bringing this integral of f minus on this side will give you integral f minus into 

d mu plus integral of g plus into d mu which is already there and integral of g minus 

from the left-hand side will give you integral of g minus into d mu. 

(Refer Slide Time: 13:40) This rearrangement of the terms here once again gives you 

that integral of (f plus g) plus into d mu and the integral of the negative part of f plus g is 



equal to integral of f plus minus integral f minus plus integral g plus. Now by the 

definition, the left-hand side is nothing but integral of f plus g into d mu and the right-

hand side is integral f into d mu plus integral g into d mu. 

That proves the linearity property of the integral that if f and g are integrable functions, 

not only f plus g is integrable but integral of f plus g is equal to integral of f plus integral 

of g into d mu; that is the linearity property of the integral (Refer Slide Time: 14:38). We 

have proved the basic properties of the integrals, namely the integral of a function which 

is integrable, of course it is a finite quantity and it is linear; if you take a function f 

multiplied by a scalar alpha, then alpha times f is integrable and the integral of alpha f is 

equal to alpha times integral of f. Similarly, if f and g are integrable, then f plus g is 

integrable and the integral of f plus g is equal to integral of f plus integral of g. Let us 

look at some more properties of this integral which are going to be useful later on. Let us 

look at the next property.  

(Refer Slide Time: 15:25) 

 

For an integrable function f in L1 of mu, let us look at we have already shown; if mod f 

is a nonnegative measurable function and if you multiply it by the indicator function of a 

set E, then we already shown that this is again a nonnegative measurable function; of 

course, this function is less than or equal to integral of mod f. So, nu of E is going to be 

always a finite quantity.  



The claim is nu is a measure, in fact a finite measure, and it has the property that mu of E 

equal to 0 implies nu of E equal to 0. Whenever a set E has got mu measure 0, the 

measure of nu is also going to be equal to 0. This basically follows from the properties of 

the integral for nonnegative functions because if f is integrable, then mod f is a 

nonnegative measurable function and its integral is a finite quantity.  

So, nu of E is a finite measure for every E, the function chiE

(Refer Slide Time: 17:01) 

 times mod of f is less than 

or equal to mod f; this integral is going to be less than or equal to integral of mod f which 

is finite. Obviously for nonnegative functions, we have already proved this property: if 

mu of E is 0, then the integral over E is equal to 0; this property follows from our earlier 

discussions. 

 

Let us look at the integral for the integrable function – not the integral of mod f but let us 

look at integral of f times indicator function of E. If you recall, we had already shown 

that if f is measurable and E is a set in the sigma algebra, then chiE times f is again a 

measurable function and just now we observed that this number is going to be a finite 

number because this is again an integrable function. 



(Refer Slide Time: 17:41) 

 

Let us just observe this property once again that if f belongs to L1 of mu and E is a set in 

the sigma algebra, then this implies that chiE

This implies that the integral of chi

 times f is a measurable function; that we 

have already seen; because f is a measurable function and indicator function of E is a 

measurable function, the product of measurable function is measurable. We observed just 

now that if you look at the absolute value of chi of E times f, that is the same as indicator 

function of E because that is negative into absolute value of f.  

E times f absolute value into d mu is less than actually 

is equal to integral chiE of mod f into d mu which is less than or equal to integral mod f 

into d mu which is finite. What does that imply? This implies that integral chiE into d 

mu, this we are denoting it by nu tilde of E, is a real number – a finite real number. That 

is the observation and we want to claim that mu of E is equal to 0 implies that nu tilde of 

E is also equal to 0 (Refer Slide Time: 18:57). 
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The claim is that the claim is that this property. Let us prove this property. Suppose mu 

of E is equal to 0, then what is nu tilde of E? nu tilde of E by definition is integral chiE of 

f into d mu which is same as the integral of chiE f plus into d mu minus integral chiE f 

minus into d mu. Now, we observe mu of E equal to 0, chiE

The first integral is equal to 0 and the second integral is equal to 0 by properties of 

integrals of nonnegative measurable functions. It implies nu tilde of E is equal to 0. What 

we are saying is mu of E equal to 0 implies nu tilde of E is also equal to 0 (Refer Slide 

Time: 20:25); that is the property we are proving here. Keep in mind that nu tilde of E is 

defined as a real number for every E belonging to S but it is not a nonnegative number 

because f may not be a nonnegative function; so, we cannot say nu tilde of E is a 

measure. We will look at this property a bit later; it may not be a measure but it has some 

properties similar to a measure.  

 of f plus is a nonnegative 

function and properties of nonnegative functions imply if the set has got measure 0, then 

the integral of this is equal to 0. 



(Refer Slide Time: 20:55) 

 

Here is another important property. Let us look at again the same value nu tilde of E 

which is equal to integral of f over E d mu. Suppose this is equal to 0 for every set E in 

the sigma algebra, then the claim is this function f must be equal to 0 for almost all x 

belonging to mu. 

(Refer Slide Time: 21:27) 

 

Let us prove this property. Given nu tilde of E which is nothing but integral chiE times f 

into d mu is equal to 0 for every E belonging to S; that is what is given to us. We want to 

show that if you take the set N which is x belonging to X such that mod f of x bigger 



than 0 if we write the set N, then note that this set N is a set in the sigma algebra and we 

want to show that mu of N… We want to show f is 0 almost everywhere and this is the 

set where f is not 0. So, we want to show this is equal to 0 (Refer Slide Time: 22:22). 

This is the problem we want to show.  

Let us look at consider the consider consider the set say for example, let us look at. Let 

us write, say, An to be the set where x belongs to X such that f of x is bigger than 1 over 

n. Similarly, let us write Bn to be the set of x belonging X where f of x is less than minus 

1 by n. Now, the claim is that the set N is nothing but union over An union over Bn, n 

equal to 1 to infinity union of union n equal to 1 to infinity. That means all these sets Ans 

and Bn

If f of x is not equal to 0, then either f of x is positive or f of x is negative. If it is 

positive, then it is going to be bigger than 1 over n for some n. If x is positive and bigger 

than 1 over n, it is going to belong to 1 over n or if f of x is not 0 and it is negative, that 

means it is negative so it is going to be less than minus 1 over n for some n; so, it 

belongs to B

s if you take their unions, that is precise as a set N where N is… What is the set 

N? N is the set where f of x is not equal to 0. 

n

Every point x in N either belongs to A

.  

n or belongs to Bn and obviously if x belongs to 

An or Bn, then f of x is not equal to 0; it belongs to N; so, N is equal to this. N is written 

as a countable union of sets and all of these are sets in the sigma algebra S. We want to 

show this union has got measure 0 (Refer Slide Time: 24:41). In case mu of N is not 0, 

that will mean for some n, either An has got positive measure or Bn has got positive 

measure, because otherwise mu of N will be less than or equal to sigma mu of Ans plus 

sigma mu of Bns, all of them equal to 0. 



(Refer Slide Time: 25:05) 

 

What we are saying is the following: to show that mu of n is equal to 0. Suppose mu of n 

is bigger than 0, then this condition implies there exists some n0 such that either mu of A 

An0 naught is bigger than 0 or mu of B n0 is bigger than 0, because if not then mu of N 

will be equal to 0. Let us look at these conditions. The first one holds; if mu of An0 is 

bigger than 0, then look at the integral; then integral of f over the set An0 let us look at; 

let us look at integral of f over the set An0

That is equal to integral so which is same as integral chi

. 

An0 times f into d mu. On the set 

An0, f is bigger than 1 over n. This is bigger than obviously integral 1 over n0 times mu 

of An0. Let us observe that on the set An0 … Outside An0, this function is equal to 0 

(Refer Slide Time: 26:42); the indicator function of An0 times f is 0; on An0, f is bigger 

than 1 over n0. So, this function is bigger than 1 over n0 and outside An0 it is 0. This is 

going to be bigger integral over An0 of 1 over n0

This is nothing but this integral and that is bigger than 0. So, in case mu of A

 into d mu; that is what we are saying. 

n0 is bigger 

than 0, integral of f over An0 is going to be bigger than 0 which is a contradiction; it is 

not true because we are given integral of f over every set E is equal to 0, which is not 

true. If this holds (Refer Slide Time: 27:34), then it is a contradiction. Similarly, if this 

holds, one can approve it is a contradiction; then the integral of f over Bn0 will be strictly 

less than 0 and not equal to 0. In either case, both of these are not possible; so, our 

assumption that mu of N is bigger than 0 must be wrong and hence mu of N so implies. 



This implies that the measure of the set N is equal to 0. N was the set where f of x is 

bigger than 0 (Refer Slide Time: 28:11). This set has got measure 0. This is what we 

wanted to prove. We have proved the property that if integral of a function over f is an 

integrable function ((.)) its integral over E is equal to 0 for every E belonging to S, then f 

must be equal to 0 almost everywhere (Refer Slide Time: 28:33). This is a very nice 

property and useful property. 

(Refer Slide Time: 28:43) 

 

Now, let us look at the additive property of the integral over the sets; this just now we 

have proved (Refer Slide Time: 28:53). Another property is that if f is integrable, then f 

must be a finite number for almost all x – a similar argument as before; let us prove that 

property also. 



(Refer Slide Time: 29:10) 

 

 

It says if f is integrable, then this implies that mod f of x is finite almost everywhere x. 

Once again, the idea is let us write the set N to be the set where mod f of x is equal to 

plus infinity; so, f of x is equal to infinity or equal to minus infinity; we have put them 

together in the set N. We have to show that the set mu of N is equal to 0. Once again if 

not, let us write N as x belonging to X such that mod f of x is bigger than say some 

quantity; it is not equal to 0.  

If this is not equal to 0 and N is a set where f of x is equal to plus infinity, let us write f 

of x bigger than n. Sorry, let us write An to be the set where f of x is bigger than n Refer 

Slide Time: 30:368). Then, each set An is in the sigma algebra. Sorry, this is not required 



because we want to just want to show that f is finite (Refer Slide Time: 30:53). Now, 

observe that integral of mod f into d mu I can write as integral over N mod f into d mu 

plus integral over N complement mod f into d mu because N and N complement together 

make up the whole space and just now we observed that integral of mod f over a set E is 

a measure; so, integral of mod f over the whole space can be written as integral of mod f 

over N plus integral of mod f over N complement. 

On N, mu of N is equal to 0; so, the first integral is 0. It is equal to 0 plus N sorry yes no 

let us observe this is so, if so, If mu of N is bigger than 0, then what will happen? Let us 

assume mu of N is bigger than 0. Then this integral is equal to this integral plus integral 

over N plus integral over N complement. 

(Refer Slide Time: 32:16) 

 

That means integral of mod f into d mu is always bigger than integral over N mod f into 

d mu. Integral of mod f is integral over N plus integral over N complement; let us just 

drop the second term (Refer Slide Time: 32:35). So, integral of mod f over the whole 

space is going to be bigger than integral over N f into d mu. On N, the function takes the 

value plus infinity; this is going to be equal to plus infinity multiplied with mu of N. 

If mu of N is bigger than 0, then this will be equal to plus infinity if mu of N is bigger 

than 0. That is a contradiction; that is not possible; not true as f belongs to L1; so, this 

integral must be a finite quantity. Here, we are saying in that case it will be equal to 



infinity. That proves that if a function is integrable, then it must be finite almost 

everywhere. 

(Refer Slide Time: 33:30) Let us come back to the question if f is integrable and E 

belongs to the set S, then the indicator function of E times f is integrable; that we have 

just now observed. Let us write nu tilde of E as before: the integral of f over E. We 

observe that this number may not be a nonnegative number; however, it still has a 

property something similar to that of countable additive property for measures. 

(Refer Slide Time: 34:11) 

 

Let us state that property that if you take sets Ens in the sigma algebra S which are 

pairwise disjoint and E is the union of the sets, then the claim is that the series which is 

integral of Eis f into d mu summation 1 to infinity – this series is absolutely convergent. 

If we write E as the union, then integral of f over E is equal to summation of integral of f 

over Eis. Essentially, we want to say that the integral of f of an integrable function over a 

set E can be written as summation integral of Eis where Ei

We are saying it is always possible for f to be an integrable function. Why are we saying 

absolutely convergent? Here, one should note that when E is equal to union E

s are pairwise disjoint. 

i, it does 

not matter whether you write as E1 union E2 union E3 and so o or any other order, say, 

E2 union E1; the union does not depend on the order in which you write the sequence Ei. 

That means in this series, the summation should not depend upon the order of the terms. 

All are nonnegative; that means we should prove that these are absolutely convergent. 



That is what we want to prove: if Eis are pairwise disjoint, then the series integral over 

Ei of f into d mu summation 1 to infinity is an absolutely convergent series and this 

integral of f over E is summation of integral over Ei

(Refer Slide Time: 36:16) 

s. 

 

 

Let us prove this property. We have got Ei is a sequence of sets in the sigma algebra; 

they are pairwise disjoint and equal to empty set for i not equal to j; E is equal to union 

of Eis 1 to infinity. The first claim is that the series summation i equal to 1 to infinity of 

integral over Ei of f into d mu is absolutely convergent. Let us observe what absolute 

convergent means; that means absolute values of these terms is a series of nonnegative 

terms that must converge.  



For that, let us note that absolute value of integral E over Ei of f into d mu is less than or 

equal to integral of mod f over Ei into d mu; that is a property of integrable functions –

absolute value of the integral is less than or equal to integral of the absolute value. mod f 

is a nonnegative function and E is a disjoint union of sets; that implies that integral over 

Ei

Here, we have used two things: one, for nonnegative measurable functions, the integral 

over a set is a measure; so, integral of mod f into d mu over E

 of mod f into d mu if I sum it up i equal to 1 to infinity, that is same as integral over E 

of mod f into d mu and f being integrable, that is a finite member.  

i summation 1 to infinity is 

equal to integral of absolute value of f over E and f being integrable, this is finite. That 

proves that the series integral f into d mu over Ei

(Refer Slide Time: 39:05) 

 is absolutely convergent because this 

sum is less than or equal to this sum (Refer Slide Time: 38:36). From these two, it 

implies that the series is absolutely convergent. Once the series is absolutely convergent, 

its sum is equal to sum of the partial sums. Now, we can easily write this implies that the 

claim holds; so, the series is absolutely convergent. 

 

Hence, integral over E f into d mu is equal to limit n going to infinity of the partial sums, 

i equal to 1 to n integral of f over Ei d mu and that is nothing but partial sums; that is 

same as saying that sigma i equal to 1 to infinity integral over Ei of f into d mu. That 

proves that though the integral of an integrable function over a set (Refer Slide Time: 

39:45) need not be a measure but we can say this is a countable additivity property of 



this integral – that integral over E is equal to summation of integrals over Eis whenever 

E is a union of pairwise disjoint sets Ei

These were some of the properties that we have proved about the integral of integrable 

functions; now we want to prove an important property; we want to analyze sequences of 

integrable functions; we want to analyze the property that if f

 (Refer Slide Time: 40:06); this is the property 

that we have just now proved. 

n is a sequence of integrable 

functions and it converges to a function f, can we say that f is integrable and can we say 

integral of fn

We have seen that this need not be true even for nonnegative functions, but under some 

suitable condition we can say that integral of f

s will converge to integral of f?  

n

(Refer Slide Time: 41:14) 

s will converge to integral of f and that is 

an important theorem called Lebesgue's dominated convergence theorem. Let us prove 

interchange of integral with the limits and look at the theorem called Lebesgue's 

dominated convergence theorem. 

 

It says let fn be a sequence of measurable functions such that there exists a function g 

which is integrable with the property that integral of mod fns are less than or equal to g 

for almost all x in mu for all n. Then the claim is if fns converge to f almost everywhere, 

then the limit function is integrable – (i) (Refer Slide Time: 41:42). Secondly, integral of 

the limit function is equal to limit of the integrable functions. 



Let us observe once again what is given and what is true. We are saying here fn is a 

sequence of measurable functions and all the fns are dominated by a single function g 

which is integrable and this dominance could be almost everywhere. All the fns are 

dominated by a single function g and the conclusion is if fns converge to f, then f is 

integrable and integral of f is equal to limit of integral of fn

(Refer Slide Time: 42:36) 

s. This is what is called 

dominated convergence theorem; it is an important theorem; let us prove this theorem. 

 

 



 

We are given that all the fns are measurable for n bigger than or equal to 1; mod f of x is 

less than or equal to g of x for almost all x and for every n; we are given that fn of x 

converges to f of x almost everywhere. To prove the required claim, for the time being 

let us assume that this almost everywhere is everywhere (Refer Slide Time: 43:23). The 

proof is not going to change much; we will see that (( )). Let u assume for the time being 

that mod fn of x is less than or equal to g of x where g is in L1 is an integrable function. 

That implies that integral of mod fn

That implies that each f

 of x into d mu of x is less than or equal to integral g 

of x into d mu of x; g is integrable and so that is finite. 

n is an integrable function; also, mod fn converges to mod f 

because fn converges to f. Each mod fn is less than or equal to g. (Refer Slide Time: 

44:31) This implies that mod fn of x is less than or equal to g and that converges; that 

implies that mod f of x is also less than or equal to g of x for every x. That once again 

implies integral mod f into d mu is less than integral g into d mu which is finite; this 

again implies that f is in L1

Under the given conditions, we have shown that if f

 of mu. 

ns are dominated by an integrable 

function and fns converge to f, then f is an integrable function. To look at the limits, let 

us note fn converges to f and mod fn is less than equal to mod g. This implies that look at 

the sequence fn minus g; look at this sequence. This is a sequence of measurable 

functions; of course, mod fn is less than or equal to g. This will be negative; we want 

nonnegative and so let us look at g minus fn; look at this sequence instead (Refer Slide 

Time: 46:11) 



This is a sequence of nonnegative measurable functions because mod fn is bigger than or 

equal to g; that is given. So, g minus fn is a sequence of measurable functions. Let us 

observe g minus fn is bigger than or equal to 0 because g is bigger than or equal to fn

(Refer Slide Time: 46:55) 

. 

This is a sequence of nonnegative measurable functions. 

 

Let us write that g minus fn is a sequence of nonnegative measurable functions and it 

converges to g minus f because fn converges to f. Now, we can apply Fatou's Lemma; 

this implies by Fatou's Lemma that integral limit inferior of g minus fn into d mu will be 

less than or equal to limit inferior of integral of g minus fn

Look at this. Now, let us compute both sides. What is the left-hand side? This is equal to 

integral limit infimum of g minus f

 into d mu; that is the 

application of Fatou's Lemma. Recall we had Fatou's Lemma which was applicable for a 

sequence of functions which is not necessarily increasing. 

n is g minus limit inferior plus limit inferior of minus 

fn; that is the left-hand side d mu. That is equal to integral of g that is equal to integral of 

g into d mu. What can we say about this (Refer Slide Time: 48:42) fns all are integrable 

function; so, everything is finite. This limit inferior of minus fn is equal to minus limit 

superior of fn

This is a property of limit superior and limit inferior that limit inferior of minus f

s into d mu.  

n is 

equal to minus of limit superior; so, this is equal to integral of g into d mu minus integral 

limit superior of fns; limit fn is convergent and so limit superior is same as f of x into d 



mu ((.)); that is the left hand side. Let us see what the right-hand side is. Once again, 

limit inferior of integral and so this is equal to limit inferior of integral; integral of g 

minus fn is integral g and that does not depend upon limit; so, it is integral g into d mu 

and then limit inferior of minus; that will be minus limit superior of integral fn

(Refer Slide Time: 50:12) 

 into d mu. 

From these two, this is less than or equal to this. What does that imply? (Refer Slide 

Time: 50:09) 

 

That implies that integral g into d mu minus integral f into d mu, I am just writing 

integral this (Refer Slide Time: 50:22), is less than or equal to integral g into d mu minus 

limit superior of integral f and d mu. Everything is finite and so I can cancel out these; 

negative sign gives you the other way inequality. It implies integral f into d mu is bigger 

than or equal to limit superior of integral fn

(Refer Slide Time: 50:54) Looking at the sequence g minus f

 into d mu. 

n, we got that g minus fn is 

nonnegative converges to g minus f gives us this (Refer Slide Time: 51:03). Similarly, if 

I look at the sequence g plus fn, that is again a sequence of nonnegative measurable 

functions and application of Fatou's Lemma will give me that integral of f into d mu is 

less than or equal to limit inferior of integral fn

This is (1) and this is (2). (1) plus (2) together imply that integral f into d mu is bigger 

than limit superior; that is always bigger than limit inferior and that is bigger than 

 into d mu; a similar application of Fatou's 

Lemma to this sequence will give me this (Refer Slide Time: 51:38).  



integral f into d mu; it implies that limit integral fn

That proves the dominated convergence theorem. The proof of the dominated 

convergence theorem is essentially very simple; it is just a straightforward application of 

Fatou's Lemma because mod f

 d mu exists, this limit exists and this 

is equal to integral f into d mu (Refer Slide Time: 52:05).  

n is less than or equal to g implies g minus fn and g plus fn 

both are sequences of nonnegative measurable functions; apply Fatou's Lemma and you 

have the conclusion that integral of f is equal to limit of integral of fns. We have proved 

this under the conditions that fn of x converges to f of x and fn of x is dominated by g of 

x for every x. The modification for this for almost everywhere ((.)) is simple and we will 

do it next time. Thank you very much. 


