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Monotone Convergence Theorem and Fatou's Lemma 

Welcome to lecture number 19 on measure and integration. In the previous lecture, we 

had started looking at the properties of integral for nonnegative measurable functions. 

We had looked at the linearity property of the integral for nonnegative measurable 

functions and then we said we will start looking at the limiting properties of functions 

which are nonnegative measurable and integrals of them. 

(Refer Slide Time: 00:53) 

 

Today, we will prove some important theorems. We will start with proving what is called 

monotone convergence theorem; then we will prove Fatou's Lemma and then go over to 

define integral for general functions. 



(Refer Slide Time: 01:05) 

 

Let us look at what is called as monotone convergence theorem. The monotone 

convergence theorem says that let fn be a sequence of functions in class L plus. That 

means fn is a sequence of nonnegative measurable functions increasing to a function f of 

x at every point; that means f of x for every x in X is limit n going to infinity of fn of x. 

We are given a sequence of fn

Then the claim is the function f belongs to L plus, this we have already observed, and the 

additional property is that the integral of the limit f into d mu is same as limit of the 

integrals of f

 of nonnegative measurable functions which is increasing 

and the limit is f of x.  

n into d mu. That means whenever a sequence fn of nonnegative measurable 

functions increases to f, then integral of the limit is equal to limit of the integrals. This is 

the first important theorem about convergence of sequences of nonnegative measurable 

functions and their integrals. Let us prove this property. 



(Refer Slide Time: 02:17) 

 

We are given fn is a sequence; each fn belongs to L plus; it is a nonnegative measurable 

function for every n bigger than or equal to 1. That implies there exists a sequence, we 

will denote it by sj n, of functions n bigger than or equal to 1 such that sj n are 

nonnegative measurable simple functions for every n and for every j and sj

Let us fix the notation – which one we are going to vary. Let us say that the upper one 

will be fixed; so, this is going to f n as j goes to infinity (Refer Slide Time: 03:12). For 

every n fixed, s

 n increases to 

f of…  

j n is a sequence on nonnegative simple measurable functions increasing 

to fns and fns increase to f. We want to show, we have already shown but we will show 

again, that this implies f belongs to L plus is a nonnegative function and integral f into d 

mu is equal to limit n going to infinity integral fn into d mu. To prove this, we are going 

to use this sequence sns and construct a new sequence of nonnegative simple measurable 

functions out of it. 



(Refer Slide Time: 04:01) 

 

What we will do is the following. Let us write for n is equal to 1 that s1 1, s2 1 up to sj 1 

converges to f1. The upper index is going to give you s1 2, s2 2 up to sj 2 increases to f2. 

In general, we will have s1 n, s2 n up to sj n will increase to fn

Let us observe that as we go from left to right, this is increasing; everywhere left to right, 

it is increasing (Refer Slide Time: 05:13); down to up, that also is increasing. If you look 

at every sequence, this is an array of nonnegative simple measurable functions; each row 

is increasing to the function on the right side and this is increasing upwards.  

 and so on; this increases 

to f (Refer Slide Time: 05:00). 



(Refer Slide Time: 05:50) 

 

Let us look at the function. Let me define from this a function; let us define gn to be the 

function which is maximum of sj

(Refer Slide Time: 06:09) 

 n, j between 1 and n.  

 

In essence, what I am doing is in this picture, let us say here is sn 1, here is sn 2 and here 

is sn n. I look at this column; we are looking at the column sn 1; let us look at this 

column and call the maximum of this to be gn. 



(Refer Slide Time: 06:58) 

 

What is gn? Let me write again. gn is the maximum; so, define gn equal to maximum of 

sj n, j equal to 1 to n. Let us observe that each gn is a maximum of nonnegative simple 

measurable functions; each gn is a nonnegative simple measurable function for every n. 

gn

(Refer Slide Time: 07:42) 

 is increasing because at the next stage n plus 1…  

 

This is going to be bigger in the next stage. If we look at gn plus 1, that is going to be sn plus 

1 1, sn plus 1 2 and so on sn plus 1 n plus 1 n and sn plus 1 n. This one (Refer Slide Time: 

08:05) is going to be bigger than everything on the left-hand side and we are looking at 



the maximum; the maximum of these is going to be bigger than or equal to maximum of 

these because at each the right-hand side function is bigger than the left-hand side 

function. So, this is going to give us that at each gn

(Refer Slide Time: 08:32) 

 is an increasing sequence of 

functions (Refer Slide Time: 08:30). 

 

Let us write let g be equal to limit n going to infinity of gn

(Refer Slide Time: 08:42) 

. 

 

All these gns are increasing and they are going to increase to some function g. What we 

are going to show is g is equal to f; that is what we are going to check.  



(Refer Slide Time: 08:53) 

 

Clearly by definition, g is a nonnegative simple measurable function because it is a limit 

of an increasing sequence of nonnegative simple measurable functions; so, g belongs to 

L plus. Also let us observe that each gn is less than equal to fn; each gn is less than or 

equal to fn for every n. That is because gn is the maximum of this (Refer Slide Time: 

09:38) and the maximum of each one of them is less than f1 is less than f2 is less than fn. 

The maximum of these gns is going to be less than or equal to this fn for every n. fn is 

increasing to f and so that will imply that gn is less than or equal to fn for every f and fn

(Refer Slide Time: 10:08) 

 

is less than or equal to f. 

 



It implies that gn is less than or equal to fn and is less than or equal to f for every n. 

Hence, when gn is increasing to g, that implies g is less than or equal to f; that is one 

observation that the function g is less than or equal to f. We claim that the other way 

round is also true; the claim is that f is also less than or equal to g. Let us note that for 

every j between 1 and n if I look at sj n, gn is the maximum of this and so this is less than 

or equal to gn for every n; this is less than or equal to gn

If we fix and g

 for every n and j between less 

than this.  

n is less than or equal to so so and this is less than or equal to g; so, sj n is 

less than or equal to gn is less than or equal to g for every j between 1 and n and for 

every n. Let us now fix j and let n go to infinity; as n goes to infinity, what happens? 

This converges to fn. Note that as n goes to infinity, sj n goes to fj. From this and this, 

these two observations, sj n is less than or equal to g for every…. If you fix j and let n go 

to infinity, then n is going to cross over j and sj n as n goes to infinity converges to fj 

(Refer Slide Time: 12:09). This implies fj

(Refer Slide Time: 12:18) 

 is less than or equal to g for every j. 

 

This implies that fj is less than or equal to g for every j; fjs are increasing and so this 

implies that f is also less than or equal to g. We have already shown g is less than or 

equal to f (Refer Slide Time: 12:32). Now, we are saying f is less than or equal to g. This 

implies that f is equal to g. Hence, one observation from here is hence that g belongs to L 



plus and so f belongs to L plus. We have once again proved that if fns are increasing to a 

function f and fn

Now note that integral of f into d mu is same as integral of g into d mu because f is equal 

to g. This is equal to limit n going to infinity of integral g

s are nonnegative measurable, then f is also nonnegative measurable.  

n into d mu because gns are 

nonnegative simple measurable increasing to g. By definition this is so, but each gn is 

less than equal to f, if you recall (Refer Slide Time: 13:37). Each gn is less than or equal 

to f; so, integral of gn will be less than or equal to integral of f; so, limit of integrals of 

fns will be less than or equal to integral f. This is less than or equal to integral f into d mu 

(Refer Slide Time: 13:55). You can even introduce in between; gn is less than or equal to 

fn; so, it is less than or equal to limit n going to infinity integral fn

What does this imply? Integral f into d mu is less than or equal to limit f

 into d mu which is less 

than or equal to integral f into d mu. 

n integral of fn 

into d mu and that is less than or equal to f into d mu. That implies that integral of f into 

d mu is equal to limit n going to infinity integral fn into d mu. That proves the theorem 

completely, namely integral of f d mu is equal to limit n going to infinity integral of fn

(Refer Slide Time: 14:50) 

 d 

mu. This is a construction which is quite useful; this is the kind of analysis one has to 

carry out.  

 

Let us go through the proof again so we that understand what we are doing. Each fj or fn 

is a measurable function. So, I can look at a sequence s1 1, s2 1, sj 1 up to sn 1 which is 



going to increase to f1 (Refer Slide Time: 15:08). Similarly, the upper ((.)) is fixed – 2; 

so, s1 2, s2 2, sj 2 up to sn 2 increases to f2 and so on. Each row is increasing to the 

function on the right side and the functions f1, f2 up to fn

What we do is we look at the maximum of this column (Refer Slide Time: 15:38). What 

is this column? This column is the maximum of the functions s

s are increasing to the function 

f.  

n 1, sn 2, up to sn n. Call 

this as gn; this function is called gn. The observation is each gn is a maximum of 

nonnegative simple measurable functions and so it is nonnegative simple measurable. 

Each gn is lesser or equal to fn because we are going up to this corner only (Refer Slide 

Time: 16:08). So, each gn is less than or equal to… because sn 1 is less than f1, sn 2 is 

less than f2, f1 is less than f2 and so on; so, this says gn will be less than or equal to fn 

and each fn

So, each g

 is less than or equal to f. 

n is less than or equal to fn is less than f. If we write the limit of gn to be g, 

then g is less than or equal to f by this simple construction. Also, for any fixed j let us 

look at sj n. Let us look at sn j where j is fixed and n is going to vary. As n varies, what 

happens to these functions? For every fixed j, this sequence of functions is going to be sj 

n is less than or equal to gn and gn is less than or equal to f. g is less than or equal to f. 

Sorry, sj n is less than or equal to gn

That will prove the theorem that limit of increasing sequence of nonnegative measurable 

functions.... (Refer Slide Time: 17:37) If f

 for j between 1 and n; that will give us that f is also 

less than or equal to g. 

n is a sequence of nonnegative measurable 

functions increasing to f, then integral f into d mu is equal to limit of n going to infinity 

integral fn into d mu. This is called monotone convergence theorem, monotone because 

we are looking at monotonically increasing sequences fns and convergence because we 

are looking at the convergence of the integrals – integral fn into d mu. This proves the 

monotone convergence theorem. 



(Refer Slide Time: 18:07) 

 

We have proved the monotone convergence theorem for when fn is an increasing 

sequence (Refer Slide Time: 18:12). Naturally, the question arises: will the similar result 

hold if I have a decreasing sequence fn of nonnegative measurable functions? That result 

unfortunately is not true. Here is an example which says that if fn is a sequence of 

functions which are nonnegative measurable and they decrease to a function f, then 

integral of f need not be equal to integral of fn

Look at X to be the real line, the sigma algebra to be the sigma algebra of Lebesgue 

measurable sets and mu to be the Lebesgue measure. Look at the function f

 into d mu. The example is on the 

Lebesgue measurable space.  

n which is the 

indicator function of the interval n to infinity. This is actually a nonnegative simple 

measurable function – each fn; fn is decreasing and decreasing to the identity function 

identically equal to 0; that is quite obvious to see. 



(Refer Slide Time: 19:22) 

 

What is fn? Here is n and we are looking at the interval n to infinity. We are looking at 

this interval (Refer Slide Time: 19:31). We are looking at the indicator function of n to 

infinity. So, the function is 0 and it is 1 here. This height is 1; this is the function fn; it is 

0 up to here (Refer Slide Time: 19:46). Then, it starts and goes; that is the function fn. 

We take n plus 1; this is n plus 1; so n plus 1 will be 0 here (Refer Slide Time: 20:00) but 

fn is equal to 1 here. Clearly, fn of x is bigger than or equal to fn plus 1

So, f

 of x for every x. 

n is a sequence in L plus and fn is decreasing. The claim is fn decreases to f of x 

which is identically equal to 0 for every x. If I take any point x on the real line, then I can 

find some integer n, say, n0 which is on the right side of it. So, for every x belonging lo 

real line ((.)), I can find a point n0 – a positive integer n0 (of course, it will depend on x) 

such that n0 of x is bigger than x. That will imply that the indicator function of n to 

infinity at x is going to be equal to 0 for every n bigger than equal to n0 and that is my fn 

of x. So, fn of x is equal to 0 for every n bigger than n; that means fn of x converges to f 

of x which is equal to 0. So, fn is a sequence of nonnegative measurable functions which 

is decreasing to f identically 0, but if we look at the integral of each fn, what is the 

integral of each fn? 



(Refer Slide Time: 21:41) 

 

Integral of fn into d lambda is the integral of the indicator function n to infinity d lambda. 

That is equal to lambda of n to plus infinity; that is equal to plus infinity for every n. 

Integral of fn is equal to plus infinity for every n and integral of f into d lambda is equal 

to f is 0 and so it is 0. This implies that integral fn into d lambda does not converge to 

integral f into d lambda whenever fn

For decreasing sequences, this result does not hold; that gives the importance to the 

monotone convergence theorem; that means whenever a sequence f

 is a decreasing sequence of function nonnegative, 

simple nonnegative; even simple function we have given example here (Refer Slide 

Time: 22:24). 

n of nonnegative 

functions is increasing, then integral f is equal to limit integral fn into d mu. For 

decreasing, this need not hold; this is what we have shown just now by an example.  



(Refer Slide Time: 22:46) 

 

However, one can prove not an inequality but some kind of a inequality for a sequence of 

nonnegative measurable functions. That is also an important result 

(Refer Slide Time: 23:03) 

 

Let us prove the result which is called Fatou's Lemma. It says let fn be a sequence of 

nonnegative measurable functions. Then the integral of limit inferior of fn into d mu is 

less than or equal to limit inferior of the integrals fn into d mu. This is only an inequality 

and it need not be an equality. What we are saying is if fn is sequence of nonnegative 



measurable functions, then it is always true that the integral of the limit inferior of fn

(Refer Slide Time: 23:53) 

s is 

less than or equal to limit inferior of the integrals. 

 

Let us give a proof of this theorem. To prove this theorem, let us just first recall what is 

fn. It is a sequence of nonnegative measurable functions; each fn is a nonnegative 

measurable function. We want to look at limit inferior of fn as n goes to infinity. This is a 

function; let us observe how this function is defined. Limit inferior of fn at a point x is 

defined as you take the infimum from some stage onwards; so, it is m bigger than or 

equal to n of fn

Look at the numbers f

 of x. 

m of x for m bigger than or equal to n; I am looking at the tail of 

the sequence fn of x from m onwards. So, this number infimum will depend on m (Refer 

Slide Time: 24:45). Let me take the supremum of this over all m. First, take the infimum 

from some stage onwards and then take the supremum of these infimums. Let us put a 

bracket here. Let me call phim to be the infimum from the stage n onwards – infimum of 

m bigger than or equal to n of fn of x; phim of x to be defined as the infimum from the 

stage n onwards of fm

Then, because it is an infimum of a sequence of functions which are nonnegative 

measurable, clearly the observation is that each phi

 of x.  

n is also a nonnegative measurable 

function; so, it is a nonnegative measurable function; that is one. Secondly, we are taking 



the infimum from some stage n onwards; so, if we increase, the claim is this phin

(Refer Slide Time: 26:19) phi

 is 

increasing.  

n, the infimum from the stage n onwards, is going to be less 

than or equal to the infimum from the stage n plus 1 onwards because we will have more 

numbers for which you are taking infimum. When you take infimum of more numbers, 

then infimum can decrease; so, infimum from the stage n onwards and the infimum from 

the stage n plus 1 onwards…. That says that the infimum from the stage n plus 1 

onwards will be bigger than or equal to the infimum; so, it is increasing; that is, phin plus 1 

is bigger than or equal to phin

(Refer Slide Time: 27:21) 

 of x for every n. It is an increasing sequence of 

nonnegative measurable functions and its limit is nothing but the limit inferior; so, it is 

increasing.  

 

It is increasing and limit n going to infinity of phin is equal to limit inferior of fn, n going 

to infinity. The stage is set – perfect – for application of monotone convergence theorem 

(Refer Slide Time: 27:42). phin is a sequence of nonnegative measurable functions and 

phins are increasing. We can apply monotone convergence theorem. It implies that by 

monotone convergence theorem the integral of limit n going to infinity of phin into d mu 

is equal to limit integral phin

The left-hand side is nothing but integral of limit inferior n going to infinity of f

 into d mu, n going to infinity.  

n into d 

mu; that is equal to limit of integral fns. Now, let us look at what is phin (Refer Slide 



Time: 28:37). phin is the infimum from the stage n onwards; each phin is less than or 

equal to fn; that is the observation from here by the definition of phin (Refer Slide Time: 

28:50). We have that that each phin is less than or equal to fn; so, integral of phin will be 

less than or equal to integral of fn

What we are observing here is because each phi

; it will be less than or equal to limit inferior of n going 

to infinity.  

n is less than or equal to fn, this implies 

(this is what we are using here) that if phin is less than or equal to fn, then the integrals of 

phins are increasing; so, its limit exists; so, it is limit n going to infinity integral phin into 

d mu is less than or equal to… However, integral of fns may not exist. We can say that it 

will be less than or equal to limit inferior of integral fn

That proves the theorem called Fatou's Lemma. So, we have two important results for 

nonnegative (Refer Slide Time: 29:59). We have got two important results for sequences 

of nonnegative measurable functions. One of them is called the monotone convergence 

theorem which says if f

s into d mu; this is what is being 

used in this conclusion.  

n is an increasing sequence of nonnegative measurable functions 

increasing to a function f, then integrals of fn

In case the sequence of nonnegative measurable functions is not increasing, then we have 

Fatou's Lemma which says that for any sequence f

s will converge to integral of f. Keep in 

mind that the monotone convergence theorem is for a nonnegative sequence of 

nonnegative measurable functions which is increasing to f.  

n of nonnegative measurable 

functions, the integral of the limit inferior of fn

With this, we conclude the section on definition of an integral for nonnegative 

measurable functions. Let us just recall what we have done. We started with defining the 

integral of nonnegative simple measurable functions, the functions which look like linear 

combinations of indicator functions sigma a

s is going to be less than or equal to, is 

always less than or equal to, limit inferior of the integrals. These are the two important 

theorems which help us to relate the limit of the integrals with the integral of the limits; 

we will see applications of this in the rest of our course.  

i indicator functions of Ai and for them we 

defined the integral to be nothing but summation of ai times mu of Ai. We showed that it 

is independent of the representation and we proved various properties of the integral for 

nonnegative simple measurable functions.  



Then we looked at the class of nonnegative measurable functions. Since every 

nonnegative measurable function is a limit of some sequence of nonnegative simple 

measurable functions increasing to that function f, we defined integral of the nonnegative 

simple measurable functions to be nothing but the limit of the integrals of that sequence 

of nonnegative simple measurable functions increasing to it. We showed this integral is 

independent of the limit of the sequence sn

(Refer Slide Time: 33:01) 

 you select which increases to f; then we 

proved various properties including monotone convergence theorem and Fatou's Lemma. 

Now, let us look at how we can define the integral for a function which is not necessarily 

nonnegative. 

 

For that, we will do the following. Let us look at a function f. Keep in mind we have got 

a measure space X as mu which is complete; f is a function which is defined on X taking 

extended real values; we want to define integral f into d mu – we want to know what it 

should look like; of course, we would like this integral to have nice properties; we would 

like to have it to be a function integral to be a linear operation. 

Let us recall the function f can be written as f plus minus f minus. We can split it into 

two parts – the positive part and the negative part of the function – where f plus n f 

minus are both nonnegative functions and if f is measurable, of course, with respect to 

the sigma algebra S, that is true if and only if both f plus and f minus are measurable. 

This is the clue how we should go about it (Refer Slide Time: 34:19); f can be written as 



a difference of two nonnegative measurable functions if f is measurable and integral of 

nonnegative functions is defined; so, integral of f plus is defined and integral of f minus 

is defined. 

(Refer Slide Time: 34:42) 

 

If our integration is going to be linear, it is all but necessary that our integral… We 

should define integral f into d mu; whatever be the way we define it, it should have the 

property f plus into d mu minus integral of f minus into d mu; this is what we would like 

to have. This is defined and this is defined (Refer Slide Time: 34:59). Now, the question 

is: is the difference defined?  

The difference will be defined if both of these quantities are finite numbers. It is defined 

if f plus into d mu is finite and integral f minus into d mu is finite. That means whenever 

f is a measurable function, the integral f plus into d mu is finite and integral f minus into 

d u is finite, we can define its integral to be equal to integral of f plus into d mu minus 

integral f minus into d mu. 



(Refer Slide Time: 35:54) 

 

With that, let us define what is called an integrable function. A measurable function f 

defined on X taking extended real values is said to be mu integrable (of course mu is the 

measure underlying the space, which is fixed) if both integral of f plus into d mu… f plus 

is a nonnegative measurable function and f minus is a nonnegative measurable function; 

so, by our earlier discussion, both these numbers f plus into d mu and f minus into d mu 

are defined.  

If they are both finite, in that case we say that the function f is integrable and its integral 

is defined as integral f plus minus integral f minus. Integral of f is defined as integral of 

the positive part of the function minus the integral of the negative part of the function. 

Whenever a function f is defined on X, we say f is integrable if both the positive part and 

the negative part have finite integrals and in that case we define the integral of f (we have 

written as f into d mu) to be integral of f plus minus integral of f minus.  

We will denote by the symbol capital L lower 1 of X, S, mu to be the class of all mu-

integrable functions. In case it is clear what is X, what is mu and what is S, we can 

sometimes simply write it as L1 of X or simply L1 of mu. If we understand what is the 

underlying measure space, the space of integrable functions, either it will be explicitly 

written as L1 of X, S, mu or sometimes simply as L1 of X or L1 of mu. This is the class 

of all integrable functions; that means all functions f such that integral f plus is finite and 

integral f minus is finite; in that case, integral of f is defined as integral f plus minus 



integral of f minus. So for all integrable functions f belonging to L1

(Refer Slide Time: 38:27) 

 of X, we have 

integral f into d mu. 

 

We will now study the properties of this integral. The first property is let us fix functions 

f and g which are integrable and a and b to be real numbers. If f and g are measurable 

functions and mod f of x is less than g of x for almost all x and g belongs to L1, then the 

claim is f is in L1

(Refer Slide Time: 39:02) 

. 

 



 

This is a very simple property we want to check. f and g are measurable functions on x 

and we are given that mod f of x is less than or equal to g of x almost everywhere mu. 

From here, the first claim is that if g is L1 of x, then that implies that f is in L1

Then, we know that N belongs to the sigma algebra and mu of N is equal to 0 n of n is 

equal to 0. Now note that because mod of f is nonnegative, mod f belongs to L plus; g is 

nonnegative measurable and so g belongs to L plus. It is almost everywhere and so mod f 

of x is less than or equal to g of x on N complement; that is what is given to us. This 

implies mod f of x into d mu x which we can write as integral over N mod f of x into d 

mu of x plus integral over N complement mod f of x into d mu. Now, let us observe that 

the set N has got measure 0; so this part is 0 (Refer Slide Time: 41:18) and on N 

complement, mod f is less than or equal to g. 

 of x. To 

prove that, let us observe. Note that we are given f of x is less than or equal to g of x 

almost everywhere x. Let us define N to be the set of all points x belonging to X where 

mod f of x is not less than or equal to g of x; here, this property is not true.  



(Refer Slide Time: 41:26) 

 

This is equal to 0 plus integral over N complement of mod f of x into d mu of x and on N 

complement, f is less than or equal to g. This is less than or equal to integral over N 

complement of g of x into d mu x. That is less than or equal to integral over the whole 

space g of x into d mu x which is finite. What we have shown is that in case mod f of x is 

less than or equal to g of x, then we have shown that the integral of mod f is finite (Refer 

Slide Time: 42:10). 

Hence, integral mod f into d mu is finite. Now, let us note that f plus is always less than 

or equal to mod f and f minus is also less than or equal to mod f. For any function, the 

positive part is less than or equal to mod f; the negative part also is less than or equal to 

mod f. That implies that integral f plus into d mu and integral f minus into d mu – both of 

them are less than or equal to integral mod f which is finite.  

We have shown that the integral of f plus and integral of f minus are both finite 

whenever mod of f is less than or equal to. What we have shown is this property is true 

(Refer Slide Time: 43:13). 



(Refer Slide Time: 43:15) 

 

This implies that integral of f plus and integral of f minus both are finite. That implies f 

belongs to L1

(Refer Slide Time: 43:28) 

. 

 

Further, let us calculate what is integral of mod f into d mu. Mod f, if you recall, is 

nothing but f plus plus f minus. That means this is equal to integral d mu plus integral of 

f minus into d mu. So, integral of mod f is nothing but integral of f plus plus integral of f 

minus into d mu. Both of them are finite; that we have already observed. We wanted to 



check that integral of mod f is less than or equal to integral of integral g d mu, which we 

have already checked.  

We have already checked that integral of f plus which is less than integral of mod f is 

less than… So mod f is less than integral g implies this and we do not have to do this 

(Refer Slide Time: 44:36). It is less than or equal to integral g d mu; that follows directly 

from that mod f. We have shown it is integrable and its integral is finite; so, this is less 

than or equal to integral of g. 

(Refer Slide Time: 44:52) This proves the first property: if f and g are measurable 

functions and mod f of x is less than or equal to g of x for almost all x and if g is 

integrable, then f is integrable. What we are saying is if a function f of x which is 

measurable is dominated by a function g which is integrable, then the function f also 

becomes integrable.  

(Refer Slide Time: 44:20) 

 

Let us look at the next property that if f and g are equal almost everywhere and f is 

integrable, then g is integrable and integrals of the two are equal. That property is 

something similar to what we have just now shown; a similar analysis will work. 



(Refer Slide Time: 45:42) 

 

We have two functions f and g; f of x is equal to g of x almost everywhere mu. Let us 

write the set N – x belonging to X where f of x is not equal to g of x. Then, by the given 

condition, mu of N not equal to that is equal to 0; f of x is equal to g of x for every x 

belonging to N complement. 

(Refer Slide Time: 46:25) 

 



 

We are given that the function f is belonging to L1. We want to show that g belongs to 

L1

That implies integral of f of x is equal to g of x. Sorry, we should say that f x is equal to 

g x almost everywhere (Refer Slide Time: 47:10). That implies f of x is equal to g of x; 

mod f x is equal to mod g of x. Just now we showed that whenever f and g are equal 

almost everywhere, integral mod f d mu is equal to integral mod g d mu. Either of them 

finite implies the other is finite. We are given this is finite and so this implies mod g d 

mu is finite. It implies once again that g is in L

 and that is because if f of x is equal to g of x almost everywhere, then that implies that 

mod f of x is also less than or equal to mod g of x almost everywhere. The sets are not 

equal; wherever they are equal, mod x is equal to g x because on the N complement that 

will happen; that is ((.)). 

1. g is in L1

Once again, this integral is equal to minus integral of f plus d mu minus integral of f 

minus d mu which is nothing but equal to integral of f d mu. So, integral g is equal to 

integral f whenever f and g are equal almost everywhere. (Refer Slide Time: 48:24) 

These are simple properties of integrable functions that we have looked at. If f is equal to 

g almost everywhere and one of them is integrable, then the other is integrable and the 

two integrals are equal. 

 and so integral of g d mu is 

equal to integral g plus d mu minus integral g minus d mu, but f is equal to g almost 

everywhere; we ask the reader to verify; that means f plus must be equal to g plus and f 

minus must be equal to g minus almost everywhere. 



(Refer Slide Time: 48:42) 

 

Next, let us check the property of linearity. If f is in L1, then we want to check that alpha 

is also in L1

(Refer Slide Time: 49:05) 

 and alpha f of d mu is equal to alpha times integral of f into d mu. 

 

To check that property, let us just observe one thing. Just now we looked at this kind of 

analysis: if f belongs to L1 of x, it is same as if and only if mod f belongs to L1 of x. 

Why is that? Once again, let us do this because this we are going to use again and again. 

Saying that f belongs to L1 this implies integral of f plus d mu is finite and integral of f 

minus d mu is finite. What is mod f? mod f is equal to f plus plus f minus. That implies 



integral f plus d mu plus integral f minus d mu is finite and this is equal to integral of 

mod f d mu. So, f belonging to L1

(Refer Slide Time: 50:22) 

 implies integral of mod f is finite. Let us look at the 

converse part – if mod f integral is finite. 

 

This is given to us: integral of mod f d mu is finite (Refer Slide Time: 50:31). Once 

again, let us observe that f plus is less than or equal to mod f and f minus is less than or 

equal to mod f. All are nonnegative measurable functions; that implies integral of f plus 

d mu is less than integral mod f d mu which is finite and integral f minus d mu is less 

than integral mod f d mu which is finite; that implies that f belongs to L1. Saying that 

(Refer Slide Time: 51:06) a function is integrable is equivalent to saying that mod f 

which is a nonnegative measurable function has got a finite integral. This property will 

be used again and again. Let us see how this property is used in our proposition. 



(Refer Slide Time: 51:28) 

 

a belongs to the real line and f is L1

Now, the possibility is either a is equal to 0; in this case, a f will be 0 and everything is 0; 

so, no problem. If a is positive, then this part is same as a times f plus d mu minus a 

times integral f minus d mu if a is positive. This a comes out because of the property for 

integral of nonnegative measurable functions; so, this will be finite. In case a is less than 

0, this becomes a of minus negative part and again that thing is okay and similarly for a 

minus. That proves the property that if f is integrable and a is a real number, then a f is 

integrable and a comes out (Refer Slide Time: 53:02). 

. Look at mod of a f. Mod of a f is less than or equal 

to mod a into mod f. All are nonnegative functions; so, integral of mod a f is less than or 

equal to integral of this which is mod a times integral mod f d mu which is finite. That 

implies that a f is an integrable function. Now, not only is it integrable but the integral of 

a f d mu you can write as integral of a f plus d mu minus integral of a f minus d mu.  

We will continue looking at the properties of integrable functions. In the next lecture, we 

will show that this integral is a linear operation on the space of integrable functions and 

various other properties of this space of integrable functions and integral on it. We will 

continue this study in the next lecture. Thank you. 


