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Welcome to lecture number 16 on measure and integration. If you recall, in the previous 

lecture we had started looking at the notion of measurable functions on measure spaces. 

We will continue that study of measurable functions and their properties and then we 

will specialize on measurable functions on measure spaces. Then, we will look at the 

space of measurable functions when x is real line and the sigma algebras ((.)) Borel 

sigma algebra or Lebesgue sigma algebra. If there is time, we will start looking at the 

integration of nonnegative simple measurable functions. Let us recall what we had been 

doing. 

(Refer Slide Time: 01:06) 

 

We had been looking at properties of measurable functions; that is what we will be 

continuing doing; then, we will look at measurable functions on measure spaces and look 



at Borel and Lebesgue measurable functions and then look at integral of nonnegative 

simple measurable functions. 

(Refer Slide Time: 01:24) 

 

Let us just recall what we had done regarding measurable functions. 

(Refer Slide Time: 01:29) 

 

We had said that if X, S is a measurable space and f is a function from X to R star, then 

saying that f is measurable is the same as saying the inverse image of every interval I 

belongs to S for every interval I contained in S. There were equivalent ways of defining 

measurability in terms of special intervals like this. This is same as if and only if f 



inverse of intervals of the type C to infinity belong to S for every c belonging to R and so 

on. Then, we looked at what is called the algebra of measurable functions. We proved 

that if f1 and f2 are measurable, then it implies f1 plus f2 is measurable; it implies f1 into 

f2

(Refer Slide Time: 02:47) 

 is measurable and so on.  

 

Today, we look at the properties of sequences of measurable functions. We want to 

prove the following. Look at a sequence fn of measurable functions; then, look at the 

function what is called the maximum of fns. This is a function denoted by V n equal to 1 

to infinity fn of x is defined as the maximum of fn of x, n bigger than or equal to 1; this is 

called the maximum of the sequence fn. Similarly, we have the notion of minimum of fns 

which is denoted by wedge 1 to infinity fn of x equal to minimum; this is extra (Refer 

Slide Time: 03:31); that is the definition. The claim is that if fn is a sequence of 

measurable functions, then the maximum and the minimum are also measurable 

functions. Let us prove this. 



(Refer Slide Time: 03:45) 

 

 

fn is defined on X to R star and fn is measurable for every n bigger than or equal to 1. We 

defined maximum n equal to 1 to infinity of fn of x to be equal to maximum of fn of x, n 

bigger than or equal to 1; this is the definition of this maximum. We want to prove or to 

show that this function V n equal to 1 to infinity fn

Let us look at maximum n equal to 1 to infinity f

 is measurable. To prove that, we can 

use any one of those conditions which we had defined earlier for measurability.  

n of inverse of the interval; let us look at 

say c to infinity. That means what? That means this is all x belonging to X such that n 

equal to 1 to infinity fn of x is bigger than or equal to c. To prove this, we have to 

convert some of this relation into individual fns because each individual fn is measurable. 



((.)) saying that maximum is bigger than or equal to c; that means at least one of them 

crosses over c; that is way of doing it, but let us look at the equivalent criteria; let us look 

at the sets fn

This is same as x belonging to X such that the maximum value f

 inverse the maximum is less than or equal to c; that is equal to minus 

infinity to c; let us look at that. 

n of x is less than c. 

Now, if maximum of something is less than c, then each one of them has to be less than 

c; that is the reason instead of using this kind of intervals (Refer Slide Time: 06:20), it is 

more convenient for the maximum to use this kind of intervals because then this set can 

be written as intersection n equal to 1 to infinity of x belonging to X such that fn

We look at the intervals of the type minus infinity to c closed and that is intersection of 

these sets and each one of this sets belongs to the sigma algebra S because each f

 of x is 

less than c. This may not be exactly true; so, let us take this is closed (Refer Slide Time: 

06:47) because maximum is less than or equal to c; then every one of them will be less 

than or equal to c; that is okay. 

n is 

given to be measurable. So, it is an intersection of elements in the sigma algebra; this set 

also belongs to the sigma algebra S (Refer Slide Time: 07:19). That means this proves 

the fact that the maximum of fn

(Refer Slide Time: 07:32) 

s is a measurable function. A similar proof will work for 

the minimum. 

 



 

Let us look at the wedge n equal to 1 to infinity fn. That is defined as the minimum of fn 

of x for n bigger than or equal to 1. The claim is that this is a measurable function. Once 

again for any c belonging to R, let us look at the minimum of fn, n equal to 1 to infinity 

inverse of some type of interval we want to show it belongs to S. Let us try looking at the 

minimum; minimum of this is bigger than c; let us try this. This is all x belonging to X 

such that the minimum of fn

If the minimum of some certain numbers is bigger than or equal to c, then each one of 

them has to be bigger than or equal to c because even if one is smaller, then the 

minimum will become smaller. This is equal to intersection of n equal to 1 to infinity of 

all x belonging to X such that f

 of x, n bigger than or equal to 1 is bigger than or equal to c. 

n of x is bigger than or equal to c. That implies this is 

nothing but intersection n equal to 1 to infinity of fn inverse of C to plus infinity and 

each fn

We have proved that if f

 being measurable, this is the measurable set; it implies that this is a set in S. 

n is a sequence of measurable functions, then we look at the 

maximum or the minimum of this sequence of measurable functions and both of them 

are again measurable functions. As a consequence of this, we prove that the limit of a 

measurable function is also a measurable function; that is our next aim – to prove that the 

limit of measurable functions is also a measurable function. 



(Refer Slide Time: 09:55) 

 

For that, let us understand what is the limit of a function.  

(Refer Slide Time: 10:00) 

 



 

Let us look at a sequence fn of functions; each fn is defined from x to R star. To define 

the notion of the limit of fn at a point x, what we do is for every x belonging to x, let us 

look at the maximum or the supremum of fn

First take the supremums and then take the infimums; this gives you a function; this is 

called limit superior of f

 of x for n greater than or equal to some 

stage m. This number, the supremum, depends on m and then we take the infimum over 

all ms; this is the supremum.  

n at the point x; this is called the limit superior of the sequence 

of functions fn of x at the point x. Similarly, limit inferior of fn of x is defined as follows: 

you first take the infimum of fn

You must have seen in your elementary analysis classes that limit superior of f

 of x for n greater than or equal to some stage m and then 

look at the supremum for all m bigger than or equal to 1; this is called the limit superior 

(Refer Slide Time: 11:35).  

n of x is 

always bigger than or equal to limit inferior of fn of x; this inequality always holds. The 

sequence fn of x converges to f of x if and only if limit superior fn of x is equal to f of x 

is equal to limit inferior of fn of x. These are elementary facts from basic analysis about 

when is a sequence of real numbers convergent; it says that for any sequence of real 

number or extended real numbers, you can define the concept of limit superior and also 

you can define the concept of limit inferior; limit superior is defined by looking at the 

supremum of the sequence An from some stage m onwards and then this supremum 

depends on m; so, look at the infimum of all these supremums; that is called the limit 

superior.  



Similarly, limit inferior is defined as first taking the infimums of the sequence fn

(Refer Slide Time: 13:58) 

 of x 

from some stage m onwards and then looking at the supremums of these numbers which 

depend on m. One proves that the limit superior of a sequence is always bigger than or 

equal to limit inferior and the sequence is convergent if and only if the limit superior is 

equal to limit inferior. In case you have not come across these concepts, I strongly 

suggest that you pick up a book on elementary analysis and revise the concepts of limit 

superior and limit inferior; we are going to use that fact now here to prove that f is 

measurable. What is f? f of x is nothing but limit superior and limit inferior. The only 

thing to show is that the limit superior and limit inferior are both measurable functions. 

 

Limit superior of fn is nothing but first taking the supremums of fn of x from n bigger 

than or equal to n and then taking infimums m bigger than or equal to 1. Just now we 

have shown that if fn is a sequence of functions, then the supremums, the maximums, are 

also measurable functions. This is a measurable function and the infimum of measurable 

functions is a measurable function (Refer Slide Time: 14:30). This implies that limit 

superior fn is measurable. Similarly, limit inferior fn is measurable and saying that fn 

converges to f is the same as saying this f is equal to limit superior fn or also equal to 

limit inferior of fns. That proves the fact that fn converges to f for every point x and fns 

measurable implies f is a measurable function. So, limits of measurable functions are 

also measurable functions. 



(Refer Slide Time: 15:18) 

 

This proves the theorem that the class of all measurable functions is nice; it is closed 

under taking point-wise limits. Now let us observe that most of these properties hold for 

extended real valued functions also when properly defined.  

(Refer Slide Time: 15:45) 

. 

The only thing to observe is the following: if f and g are extended real-valued functions 

and you want to define f plus g, care has to be taken because you will like to define it as f 

of x plus g of x, but the problem comes if f of x is equal to plus infinity and g of x is 

equal to minus infinity. Then what will be this number (Refer Slide Time: 16:19)? That 



is not defined or f of x is equal to minus infinity and g of x is equal to plus infinity; even 

then, the problem comes; this number is not defined. 

What one does is to ((.)) suitably define means look at all the points, call the set as A 

where all x belonging to X where either of these things happen – where f x equal to plus 

infinity, g x is equal to minus infinity or f of x equal to minus infinity and g of x equal to 

plus infinity. Now, one observes that this set A is in the sigma algebra because f of x is 

equal to plus infinity belongs to sigma algebra and intersection with that belongs to 

sigma algebra; so, this set A is in the sigma algebra. A is the set on which the problem 

can come. 

(Refer Slide Time: 17:24) 

 

What one does is one defines f plus g of x to be equal to f of x plus g of x if x does not 

belong to A; you can define it as any number alpha if x belongs to A. With this 

definition, it easy to observe; let me leave it as exercise for you to show that if I define it 

this way with any value alpha on the set A, then f plus g is S measurable. That is what I 

mean by saying that the above results, most of these properties, hold for extended real-

valued functions also when those functions are appropriately defined (Refer Slide Time: 

18:03). We will not go much into the details of this; one can easily verify these things. 



(Refer Slide Time: 18:19) 

 

Another property of measurable functions is the following. Let us look at two functions f 

and g which are measurable. Then the following holds. Look at the sets x belonging to X 

such that where f of x is bigger than g of x or the set x belonging to X where f of x is 

strictly less than g of x or x belonging to X where f of x is equal to g of x and similarly, 

where f of x is bigger than or equal to or f of x is less than or equal to. Our claim is all 

these sets are in the sigma algebra S. Let us look at to proof of one of them and others 

will follow similarly. 

(Refer Slide Time: 19:08) 

 



f and g are functions X to R star measurable. Let us look at the set x belonging to X such 

that f of x is strictly less than g of x. Our aim is to show that this belongs to the sigma 

algebra S. Since we are given f and g are both measurable, we are given the property that 

f of x less than or equal to some real number belongs to the sigma algebra and similarly g 

of x less than or equal to a real number belongs to the sigma algebra. 

The objective is try to interpret this sets in terms of union intersections of something of 

sets of the type where f of x is less than something and g of x is less than something. For 

that, we observe that for any x if f of x is less than g of x, then there must be a rational 

number in between them; for every x belonging to X, there exists a rational r such that f 

of x is less than or is less than g of x. Here, we are using the fact that rationals are dense 

on the real line. 

(Refer Slide Time: 20:40) 

 

With this property, we can write x belonging to X such that f of x is less than g of x; this 

implies that x belonging to X such that for some rational, f of x is less than r is less than 

g x; conversely if for some r this is true, then obviously f of x is equal to g of x; so, the 

claim is this is equal to union over r belonging to rational numbers (Refer Slide Time: 

21:11).  

This is the only crucial point in this that the set f of x less than g of x can be written as a 

union over all rationals such that f of x strictly less than r strictly less than g of x. Now, 

observe this set is an intersection; so, I can write it as r belonging to Q. This set is where 



f x is less than r and g x is bigger than r (Refer Slide Time: 21:42). So, it is x belonging 

to X such that f of x less than r intersection with the set x belonging to X such that g of x 

is bigger than r. 

(Refer Slide Time: 22:05) 

 

(Refer Slide Time: 22:03) What we have done is we have interpreted the set x belonging 

to X such that f of x less than g of x as… Let us just look at the set again. This is union 

over r (Refer Slide Time: 22:14). That is equal to union over r belonging to Q. What is 

this set? This is f inverse of f of x less than r; that is, less than r means it is minus infinity 

to r. The second set is nothing but g inverse of g of x bigger than r; so, it is r to plus 

infinity.  

The set f of x less than g x is written as union over rationals intersections of these two 

sets (Refer Slide Time: 23:01). Now f and g being measurable, this set belongs to the 

sigma algebra; g being measurable, this set belongs to the sigma algebra; it is intersection 

and so the whole set belongs to the sigma algebra; intersection belongs to sigma algebra; 

rationals are countable and so this is the countable union of elements in the sigma 

algebra; so, this belongs to the sigma algebra.  

What we have shown is the set x belonging to X such that f of x strictly less than g of x 

belongs to the sigma algebra S. That proves the first property of the theorem. Now if you 

take just the complement of this set, this also implies that x belonging to X such that f of 

x less than g of x the complement of this set what will be that? That is all x belonging to 



X such that f of x is bigger than or equal to g of x; that set also belongs to the sigma 

algebra. (Refer Slide Time: 24:05) 

(Refer Slide Time: 24:10) 

 

Similarly, we said that f of x less than g of x belongs to it. Let us write x belonging to X 

such that f x is strictly bigger than g x is also in the sigma algebra, because by similar 

arguments I can write this as the union over all rationals of f inverse of… f x bigger than 

and so that will be r to plus infinity intersection with g inverse of minus infinity to r.  

By similar argument where we had f of x less than, again we can interpret f x is bigger 

than g of x and so there must be a rational in between; so, that must be true; that will 

imply that this belongs to the sigma algebra. Saying that f of x bigger than g of x belongs 

to the sigma algebra is okay. If you take the complement of this, that is nothing but x 

belonging to X such that f of x less than or equal to g x also belongs to the sigma algebra 

because this is the complement of the set in the sigma algebra. (Refer Slide Time: 25:28) 

Measurable sets have nice properties, namely if f and g are measureable, then operations 

involving measurable functions give you again sets in the sigma algebra. These are nice 

properties and we will see use of these properties soon. 



(Refer Slide Time: 25:49) 

 

With this, we complete the study of measurable functions on measurable spaces. Next, 

we are going to look at measurable functions which are defined on measure spaces; they 

also a play a role later on. We want to look at functions f which are defined on the set X 

taking extended real values and on X there is a sigma algebra S and a measure mu given 

on S.  

Let us first define what is the meaning of the notion of almost everywhere. We say that a 

property P about the points x is set to hold almost everywhere with respect to the 

measure mu if… Look at the set of points X for which the property P does not hold at x; 

look at all those points of x such that the property P does not hold at the point x. This is a 

subset; this subset belongs to the sigma algebra and mu of E is equal to 0. What we are 

saying is except for a set of measure 0, the property holds. That is why we give it a name 

that the property P holds almost everywhere with respect to the measure mu. Let me 

illustrate this with some examples.  

Let us take a function f and we look at the statement that f is 0 almost everywhere. f is a 

function which is an extended real-valued function defined on the set X. We want to say 

that this function is 0 almost everywhere. Look at the set of points where f is not 0. What 

will that statement mean? That set where f is non-zero should be an element in the sigma 

algebra and its measure should be 0; so, x belonging to X such that f of x is not 0 should 

be an element in the sigma algebra and its measure… Measure can be defined only when 



the set is in the sigma algebra so mu of that set is equal to 0. The statement that f is equal 

to 0 almost everywhere will mean mu of, measure of, the set of points where f x is not 0 

is 0. 

(Refer Slide Time: 28:20) 

 

Let us look at another illustration of this. The statement that f is finite almost everywhere 

– what will that mean? That will mean look at the set of points where f is not finite; that 

means what? f is an extended real-valued function and so it can take the value plus 

infinity or minus infinity. The set of points x belonging to X such that mod of x is equal 

to plus infinity (that is same as either f of x is plus infinity or f of x is equal to minus 

infinity) is in the sigma algebra and mu of that set is equal to 0. 

Saying a function f is finite almost everywhere means the set of points where it can take 

the value plus infinity or minus infinity is the set of measure 0. Similarly, let us look at 

two functions f and g and let us look at the statement that f is strictly bigger than g 

almost everywhere. f is strictly bigger than g almost everywhere – what will that 

statement mean?  

That means the set of points where f x is not strictly bigger than g of x and that is the 

same as the set of points where f of x is less than or equal to g of x – the complement of 

that statement is f of x less than or equal to g of x and these set of points have got 

measure 0. Saying that f of x is strictly bigger than g almost everywhere with respect to 



mu means mu of the set where this statement is not true and that is f of x less than or 

equal to g of x is 0. 

(Refer Slide Time: 29:56) 

 

This concept of almost everywhere is quite useful when looking at measurable functions. 

Let us prove the property that if f and g are two extended real functions such that f of x is 

equal to g of x almost everywhere mu, then measurability of one of the functions f 

implies the measurability of the other function g; so f is S-measurable if and only if g is 

S-measurable. Let us prove this property that if two functions are equal almost 

everywhere, then the measurability is not changed – measurability of one. 



(Refer Slide Time: 30:36) 

 

 

Let us look at f from X to R star; g is also from X to R star. We know that the set of 

points x belonging to X such that f of x not equal to g of x has mu measure equal to 0. 

Let us suppose f is S-measurable; we need to show g is S-measurable. To show that g is 

S-measurable, let us look at g inverse of any interval I and g inverse for every interval I, 

I an interval in R star; then we want to show that g inverse of I belongs to S for every 

interval I (Refer Slide Time: 31:55). Now, we have to transform this property, this set, 

into something regarding f. Let us look at g inverse of I is same as all x belonging to X 

such that g of x belongs to I. This is a subset of the set X. 



(Refer Slide Time: 32:25) 

 

 

What I can do is I can write g inverse of I as intersection of x belonging to x such that g 

of x belongs to I intersected with the set A and also union; so, intersect with A 

complement; so, g inverse of I I have intersected with A and A complement. It is a union 

of these two sets; it is x belonging to X such that g of x belongs to I intersection A 

complement. 

Now, let us look at the first set. This is g x belonging to I intersection A (Refer Slide 

Time: 33:11). What was the set A? What is the set A? A is the set x belonging to X 

where f of x is not equal to g of x. We are given that mu of A equal to 0. That 

automatically implies that A belongs to the sigma algebra S; that automatically implies 



that the set x belonging to X such that g of x belongs to I intersection A also belongs to 

the sigma algebra. So, this set also belongs to the sigma algebra. Why? It is because this 

is a subset of A and A is a set of measure 0; so, this is a set of measure 0 and we have 

already assumed our measure spaces are complete. 

This is so because the measure space X, S, mu is complete; we have made the 

assumption that we are working on complete measure spaces; that shows the importance 

of complete measure spaces. This set belongs to A (Refer Slide Time: 34:36). In the 

other part A complement, on A complement f is equal to g; so, I can replace it by A 

complement; so, the set x belonging to X such that g of x belongs to I intersection A 

complement is the same as the set x belonging to X where f of x belongs to I intersection 

A complement, because on A complement f is equal to g. That means what? g inverse of 

I is written as g inverse of I intersection A. 

(Refer Slide Time: 35:23) 

 

Let us just rewrite this statement again. What we are saying is g inverse of I can be 

written as g inverse of I intersection A union g inverse of I intersection A complement. 

That is same as g inverse of I intersection A union f inverse of I intersection A 

complement, because on A complement f is same as g. This is a set of measure 0; mu of 

this set is equal to 0 (Refer Slide Time: 35:52). It implies that this set g inverse of I 

intersection A belongs to the sigma algebra.  



This set f is measurable; it implies this set is in the sigma algebra; A is in the sigma 

algebra; so, A complement in the sigma algebra; intersection is in the sigma algebra; so, 

this element belongs to the sigma algebra (Refer Slide Time: 36:11). This is a union of 

two elements in the sigma algebra; this implies that g inverse of I also belongs to the 

sigma algebra S. We have shown f measurable f equal to g almost everywhere mu 

implies g measurable; that is the importance of measurable functions equal almost 

everywhere, but keep in mind we have used the fact that underlying measure space is a 

complete measure space. 

(Refer Slide Time: 36:46) 

 

This says that if f is measurable, you can change its values on a set of mu measure 0 and 

still the function will remain measurable. Another impetration of this result is if f is 

measurable and you change its values on a set of measure 0 and call that function as g, 

that is measurable; that is quite an important fact. Another application of this concept of 

almost everywhere is the following; look at the sequence fn – a sequence of measurable 

functions converging to a function f almost everywhere; that is, the set of points where f 

x is not equal to the limit has got (this set has got) measure 0. Then, the claim is the f is 

also measurable. Just now we proved that if a sequence fn of measurable functions 

converges to f, then f is measurable; now we are saying that if fns are defined on a 

complete measure space and fn converges to f almost everywhere, even then this 

property remains true. Basically the idea is same as before; so let us just look at how 

does one write the proof of this statement. 



(Refer Slide Time: 38:08) 

 

 

We have got a complete measure space X, S, mu; we have got a sequence fn of 

functions; fns are measurable and fns converge to f almost everywhere mu. That means 

look at the set A equal to x belonging to X such that fn

We are given A is a set of measure 0. This is a subset of A (Refer Slide Time: 39:33); so, 

that is a set of measure 0. This implies that f inverse of I intersection A belongs to the 

 of x does not converge to f of x. 

Then, what is given to us is that this set A belongs to the sigma algebra and mu of A is 

equal to 0. We want to show that f is measurable. Once again, for any interval I look at f 

inverse of I. I can write it as f inverse of I intersection A union f inverse of I intersection 

A complement. 



sigma algebra S because this is a set of measure 0 and our underlying measure space is 

complete. On this portion A complement, fn is converging to f; so, this f I can write it as 

limit n going to infinity of fn

We know f

 inverse of I intersection A complement. This set is same as 

this (Refer Slide Time: 40:05).  

ns converge to f on A complement; that is a measurable set; this is an element 

in the sigma algebra, because on A complement fn is converging; if we restrict ourselves 

to A complement, then that must be an element in the sigma algebra; so, both belong to 

the sigma algebra; this belongs to the sigma algebra S (Refer Slide Time: 40:36). We can 

exploit the concept of almost everywhere when dealing with complete measure spaces. 

This implies that if fn

(Refer Slide Time: 41:03) 

 is a sequence of measurable functions converging to a function f 

almost everywhere, then the limit also is a measurable function. This emphasizes the 

property of something holding almost everywhere. 

 

Now, let us specialize the case when our underlying set is the real line. Then we have got 

two sigma algebras; when x is equal to real line, then we have got two sigma algebras. 

One is the Borel sigma algebra and the other is the sigma algebra of Lebesgue 

measurable sets. We have shown that the sigma algebra of Borel subsets is a subclass of 

Lebesgue measurable sets.  

When we are looking at functions defined on real line taking values as extended real 

numbers, there are two possibilities to analyze whether the function is measurable with 



respect to the Borel sigma algebra or measurable with respect to the Lebesgue sigma 

algebra. There are two notions of measurability as far as the real line is concerned and 

we will separate them out. We will say a function is Lebesgue measurable if the inverse 

image of every interval in R star is a Lebesgue measurable set. 

If the inverse image of every interval in R star is a Lebesgue measurable set, then we will 

say that the function is Lebesgue measurable; we will say a function is Borel measurable 

if for every interval in R star will pull back its ((.)) image in R is a Borel set in R. Here is 

the difference: Lebesgue measurable requires that the inverse image is in the Lebesgue 

sigma algebra – sigma algebra of Lebesgue measurable sets and f inverse of I in BR

It is obvious because Borel subsets form a subset of R; it is obviously clear that every 

Borel measurable function is also a Lebesgue measurable function, because inverse 

image of every interval is in B

 says 

its inverse image is always a Borel set in R. 

R and BR is the subset of LR

(Refer Slide Time: 43:30) 

; so, every Borel measurable 

function is also a Lebesgue measurable function. For example, let us look at a function 

which is continuous. If f: R to R is continuous function, then it is going to be a Borel 

function. Let us prove that every continuous function is a Borel measurable function and 

hence also Lebesgue measurable. 

 



 

f is a function which is defined from X. Sorry, X is real line. f is the function defined 

from R to R and f is continuous. The claim is that f is Borel measurable; that is, f inverse 

of any set E belongs to BR for every set, say, E belonging to BR. The continuity of a 

function can be expressed in terms of open sets. Let us look at the class A of all subsets 

E belonging to BR such that this property is true: f inverse of E belongs to BR

What do we have to show? Saying that f inverse of E belongs to B

. 

R for every E in BR is 

equivalent to saying to show that this A is equal to BR; that is where we are going to use 

our sigma algebra technique. To show that A is equal to BR, note that A is already a 

subclass of BR because we are picking up sets in BR; to show that A is equal to BR, we 

have to show that BR is inside A. For that, we will show two steps: (i) – open sets are 

contained in A; second, we will show that A is a sigma algebra because once A is a 

sigma algebra and includes open sets, it must include the smallest sigma algebra 

generated by the open sets, that is, BR; so BR will be inside A and we will be through. To 

prove these two facts it is quite obvious because of the given condition (Refer Slide 

Time: 45:45). 



(Refer Slide Time: 45:52) 

 

 

Open sets belong to A and so let U contained in R be open; F continuous implies that f 

inverse of U is open; hence, this means f inverse of U belongs to BR. What we have 

shown is if U is open, then f inverse of U is in BR

The second property if E belongs to A implies f inverse of E belongs to B

; that implies that the open sets are 

inside A. A is a sigma algebra; that is more straightforward. Let us observe; the empty 

set is equal to f inverse of empty set and R is equal to f inverse of R; both belong to A 

because empty set and the whole space are equal to this; this is obvious – empty set and 

the whole space belong. 

R; that implies 

f inverse of E complement belongs to BR; that implies this set is same as f inverse of E 



complement belongs to BR. What we have shown is if E belongs to A then f inverse of E 

complement belongs to BR

(Refer Slide Time: 47:50) 

 and that implies that E complement belongs to A; so that 

means E ((.)). So, the class A includes the empty set, includes the whole space and it is 

closed under complements. 

 

Finally, let us show that it is also closed under countable unions. Let us take sets En 

belong to A, n bigger than or equal to 1. That means what we are given is that f inverse 

of E n belongs to the sigma algebra BR because the property En belongs to A means the 

inverse image is in BR. That implies BR is the sigma algebra; that implies union 1 to 

infinity F inverse of En belongs to BR

Now, a simple observation: this set is same as f inverse of union E

. 

n, n equal to 1 to 

infinity and that belongs to BR. If Ens belong to A, then f inverse of the union belong to 

BR; that means union of n equal to 1 to infinity Ens belong to A. If Ens belong to A, then 

F inverse of the union belongs to BR and that means the union belongs to A. Hence, we 

have shown that A is a sigma algebra of subsets of A and it includes open sets; so, it 

must include BR and hence this is equal. That proves that every continuous function from 

R to R is Borel measurable and hence it is also Lebesgue measurable (Refer Slide Time: 

49:19). So, all topologically nice functions continuous functions become Lebesgue 

measurable on the real line. 



(Refer Slide Time: 49:30) 

 

Let us look at some more properties. We showed that every Borel function is Lebesgue 

measurable. There exists functions first of all R to R star which are not Lebesgue 

measurable. To prove that, we have to simply observe that there are sets. 

(Refer Slide Time: 49:57) 

 

Let us go back and recall that for a function f from R to, say, R star, let us look at f equal 

to indicator function of a set A where A is a subset of X; recall chi of A is Lebesgue 

measurable if and only if A belongs to L of R. If you can produce a set which is not 

Lebesgue measurable, then the indicator function will not be Lebesgue measurable. The 



answer to this question do there exist non-Lebesgue measurable functions depends upon 

whether there are non-Lebesgue measurable sets. If you recall, we had proved the fact 

that the non-Lebesgue measurable sets exist; that question is related to basic set theory. If 

you assume Axiom of Choice, then we constructed non-Lebesgue measurable sets. 

So assuming Axiom of Choice, one can claim that there exist functions which are not 

Lebesgue measurable. By the same reasoning, one can ask the question: do there exist 

functions which are Lebesgue measurable but not Borel measurable, because every Borel 

measurable is Lebesgue measurable? For that, by the same logic again if you pick up a 

set A which is Lebesgue measurable but not a Borel set, then the indicator function of 

that set is going to be a function which is going to be BR

These two questions – whether there exist non-Lebesgue measurable functions and 

whether there exist functions which are Lebesgue measurable but not Borel – get tied up 

with the fact that the Lebesgue-measurable subset is a proper subset of power set of R 

and B

 measurable but not Borel 

measurable.  

R

Let me just recall; the measurable functions are functions defined on the underlying set 

X with properties that the inverse image of every set E in the Borel sigma algebra of 

extended real numbers is again in the sigma algebra – on the domain space; that is, S. 

This is a property about the inverse images of sets being in the sigma algebra S. We will 

see how this property plays a role in our further study of study of integration; we will do 

it in the next lecture; we will start the notion of integration for measurable functions. 

Thank you. 

 is a proper subset of the Lebesgue-measurable sets. With that, we conclude the 

study of properties of measurable functions. 


