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Properties of Measurable Functions. 

Welcome to lecture 15 on Measure and Integration. In the previous lecture, we had 

defined what is called a measurable function on a measurable space X and then we had 

looked at some equivalent ways of looking at measurable functions. 

We looked at examples of what are called simple measurable functions; they are nothing 

but finite linear combination of indicator functions of subsets of the set x. 

The simple measurable functions are sort of the core of the class of all measurable 

functions. 

We showed that some of simple measurable functions, product of simple measurable 

functions and, maximum and minimum of simple measurable functions, are all simple 

measurable functions. 
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Today, we will start looking at some general properties of measurable functions f; then 

we will characterize measurable functions in terms of simple measurable functions. So, 

todays talk is going to be mainly on properties of measurable functions. 

(Refer Slide Time: 01:35) 

 

So, let us recall, for a simple function we define what is called the positive part and the 

negative part of a function. This can be defined for any function, let f be a function 

defined on X taking extended real valued functions- extended real values R star. 

Then we define what is called the positive part of the function. That is denoted by f plus 

of x. This is again a function on the space X and it is defined as, f plus of x is equal to f 

of x, if f of x is bigger than or equal to 0 and it is defined as 0 if f of x is less than zero. 

Essentially, what we are saying is, look at the graph of the function f of x. As long as the 

graph remains above the x axis, keep the function as it is; so, f of x is kept as it is, if f of 

x is bigger than or equal to 0. 

As soon as the graph goes below the x axis, we define its value to be equal to 0. So, this 

is called the positive part of the function. Note that for any function f, the positive part of 

the function is again a function on the space X, but it takes only non negative values. 

Similarly, we can define the negative part of the function to be a function on X, again 

such that it is denoted by f minus of x. So, f minus of x is equal to minus of f of x; keep 

in mind, we are putting a negative sign here if f of x is less than or equal to 0. That 



means, as soon as the function is on x axis or below the x axis, we reflect it against x axis 

and put its value as minus of f of x. So, if f of x is negative, this will always be a non 

negative quantity and it is function is defined as 0 if f of x is bigger than 0. 

Essentially, once again it is looking at the graph of the function; as long as the graph of 

the function is above the x axis, we put it as the value equal to 0 and it is minus of f of x, 

if f of x is less than or equal to 0. 

So, these are called the positive part and the negative parts of the function and it is quite 

obvious from the definition that f can be written as, f plus minus of f minus. 
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We want to prove that, if f extended real valued is a measurable function- we want to 

show that, in that case the positive part and negative part are both measurable functions; 

conversely if positive part and negative part are measurable, then the function f is 

measurable. 

So namely saying, a function f on X taking an extended real valued is measurable, if and 

only if, both f plus and f minus are measurable functions. The proof is where the simple. 

Let us assume, first f is measurable then for any point c in R, look at the inverse image of 

the enclosed intervals c to plus infinity- f plus inverse image closed interval c to infinity. 

So that we know, is because f of x, f plus of x is equal to f of x, if f of x is bigger than 0. 

If this value c is bigger than 0, then f plus of x will be equal to f of x; this inverse image 



of the closed interval c to infinity under f plus is nothing but the inverse image of f, of 

the interval c to infinity, if c is bigger than or equal to 0 because in that case, f of x is 

always going to be positive. And it is equal to the inverse image of the interval 0 to 

infinity. I, if c is negative, because then we do not want to look at the remaining part. 

So in either case, because f is measurable both these sets are in the sigma algebra. So, f 

inverse f plus inverse of c to infinity- belongs to the sigma algebra, if f is measurable; 

that proves that f plus is measurable. A similar argument will prove that f minus is also 

measurable. 

Essentially, what we are saying is, the f plus inverse- that is a inverse image of the 

interval c to infinity under f plus can be represented as inverse image of an interval of f, 

under f of some interval and both are f measurable, implies that both whenever that f 

inverse of an interval is a set in the sigma algebra. 
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So, we have shown that if f is measurable, then f plus and f inverse or f minus are both 

measurable. Let us prove the converse part, suppose both f plus and f minus are 

measurable; let us take a point c belonging to R, then we should show that the inverse 

image, f inverse of c to infinity belongs to the sigma algebra S for every c in R. 

So, let us fix the c and look at this. We have to interpret this in terms of inverse images 

of some intervals in terms of f plus and f minus. Now, let us observe that f, the inverse 



image of the interval c to infinity can be decomposed into two parts: namely, f inverse of 

c to infinity and intersection 0 to infinity. 

Look at the intersection of c to infinity with 0 to infinity, the intersection of this interval 

c to infinity with minus infinity to 0. Thus, interval c to infinity is decomposed into two 

parts: it has intersection with minus infinity to open interval 0 and it has intersection with 

close interval from zero to infinity. 

So, f inverse of c to infinity is nothing but f inverse, the inverse image of interval c to 

infinity intersection with 0 to the part of the interval, which lies in the positive part; 

inverse image of the part of the interval, which lies in the negative part, but that means in 

the first part, we are looking at whenever the function is in 0 to infinity, that means 

function is non negative. 

The first inverse image is nothing, but the inverse image of this- in same interval under f 

plus, similarly; the second one is an inverse image of the interval c infinity into 

intersection with minus infinity to 0 with respect to f inverse. 

So, the part of the function which lies in 0 to infinity is written as inverse image under f 

plus of an interval and the other part is written as inverse image under f minus. 

Since, both f and f minus- f plus and f minus are measurable functions, so these two sets 

f plus inverse of that interval and f minus inverse image under that interval, these both 

are sets in the sigma algebra S. So, their union is also in the sigma algebra S, that means 

f inverse of c to infinity is in the sigma algebra for every c- belonging to R. 

And that proves that this is a, f is a measurable function. We have shown that if function 

f is measurable, if and only if, X positive part and negative part both are measurable 

functions. 
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Next, let us look at some more properties of measurable functions; we want to give a 

characterization of measurable functions in terms of simple functions. So, we start with a 

non negative function, let f be a non negative function on defined on X, taking values in 

0 to infinity. 

We want to show that this function f is measurable, if and only if, there exists a sequence 

sn of simple monotonically increasing functions andagain in fact non negative. We can 

also say: they are non negative simple measurable and non negative sequence of 

functions, which are monotonically increasing to the function f. 

That means if a function f is non negative and measurable, this can happen if and only if 

S can be written as a limit of simple functions, which are non negative and the sequence 

sn is increasing. 
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So, let us prove this fact- let us start with- let f, is from X to R and we are given a 

sequence, such that there exists a sequence sn, of simple non negative functions; sn 

increasing to f, that means what? That means f of x is limit of n going to infinity of sn of 

x for every x- belonging to X and this sn are a monotonically increasing. so, this is one 

this is written as this. 
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To show non negative simple functions, each the simple, of course measurable; so to 

show that f is measurable, now let c belong to R and let us look at the inverse image of 



the interval c to plus infinity, what is that? That is all x belonging to X, say that f of x is 

bigger than c or it will be easier, if we will look at the other sets. 

So let me instead of this- let me look at the set, which is f inverse of minus infinity to c. 

We will soon see why I am taking this instead of the earlier set. Why I am taking this, 

because this proof becomes slightly simpler. So, what is this? This is all x belonging to X 

such that f of x is less than or equal to c. 

What is f of x? Recall, just now we said f of x is limit n going to infinity of sn of x and sn 

x is increasing. So, if the limit of sn x, which is f of x is less than or equal to c- that 

means each sn has to be less than or equal to c, because even if one goes above c then the 

limit has to be bigger than c. 
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So, this condition implies that sn x is less than or equal to c for every n bigger than or 

equal to 1. 

So implies, that the set f inverse minus infinity to c- if x is such that f of x is less than or 

equal to c, that implies sn of x is less than or equal to c. 

So, that means this is contained in this is for every n, this contained intersection n equal 

to 1 to infinity of all x; such that sn of x is less than or equal to c and if conversely- if, so 

note, if sn of x is less than or equal to c for every n, then at this- automatically, implies 

that f of x, because f of x is the limit that is also less than or equal to c.  

Hence, what we have are saying is, this is actually an equality- so, n is f inverse of minus 

infinity to c can be written as intersection n equal to 1 to infinity of x. 

Such that sn of x is less than or equal to c and that is same as n equal to 1 to infinity. So, 

this is sn inverse of the interval minus infinity to c and sn 

So, what we have shown is, if there exists a- what we have shown is, if f can be written 

as a limit of increasing sequence of simple measurable and non negative simple 

measurable functions, then f is measurable. 

is being a simple measurable 

functions, each one of them is an element- each one of these sets is an element in the 

sigma algebra S. So, implies that f inverse of minus infinity to c belongs to the sigma 

algebra S, that means hence f is measurable. 
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Let us look at the converse part of it which is going to be slightly not so obvious. So, 

conversely let f from X be a non negative function 0 to plus infinity, is measurable. We 

want to show, to construct a sequence sn of functions; say that each sn is simple, non 

negativenon-negative and sn is increasing to f. 

So, this is all we want to do. This construction is intuitively very obvious, but needs to be 

explained so, let us look at in the picture and let us draw a picture of the function. So, let 

us draw- this is x axis and this is the values, that takes the real number and their all 

values are non-negative. So, the graph is going to be above the x axis and this is going to 

be the graph of the function of f of x. 
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And the range of the function is a subset of 0 to infinity. So, what we are going to do is? 

We are going to partition the range first, into smaller intervals; to do that let me draw a 

picture on a slightly bigger piece so that, we are able to look at it. so this is the graph of 

the function f of x and this is x. 

So let us mark of, let us put a point n here and this is the point 0. So, from 0 to n and then 

from n to onwards we have dividing the range of the function. The range is a subset of 0 

to infinity. So, we had divided the range and so I am writing 0 to plus infinity as equal to 

0 to n open and union to the closed n to plus infinity. 

So, I have divided the range into two parts and now next, what do we do is the portion 0 

to n, this portion from 0 to n where I am going to divide for every n into smaller pieces 

of lengths 2 to the power n. Cut it into pieces such that, the length of each piece is 

nothing but 1 over 2 to the power n so this is a length of each piece. 

So, let us call the interval- this is my general interval so the upper point here will denoted 

by say, k minus 1 by 2 to the power n and the lower part is k by 2 to the power n. So, I 

am going to write this is equal to and we are going to look at: open at the bottom, closed 

at the bottom and open at the top. 

I am going to write as union of intervals of the type k minus 1 by 2 to the power n, k by 2 

to the power n union that other part we leave it as it is n to plus infinity. 



This union, how many such small pieces will be there? Total length from 0 to n each has 

got: sub interval and has got length. So, 2 to the power n- this starts with k equal to 1 and 

goes up to n times 2 to the power n. so this is what we do 
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Now for every n, I want a function sn of x and for any x, look at the value of f of x. so, 

let us look at those values. For every x belonging to X f of x belongs to 0 to infinity.  

So, that means this union is a disjoint union so, which are let us write f of x belongs to 

that partition- that we have design. So, k equal to 1 to n times 2 to the power n of the 

interval k minus 1 by 2 to the power n to k by 2 to the power n open and this union, n to 

plus infinity. 

Now, if f of x belongs to this and this is a disjoint union. So f of x will belong to only 1 

of them, implies either f of x belongs to n to plus infinity or f of x will belong to 1 of the 

sub intervals; let us call it as k minus 1 by 2 to the power n over k by 2 to the power n. 

So, these are the two possibilities and now we want to define a function sn. So, to define 

sn of x we want to define what should be the value of it. See if the value is bigger than n: 

if f of x is bigger than n, then let us keep the value to be equal to n. This happens if f of x 

belongs to n to plus infinity. 



And let us define it: if f of x is inside this k minus 1by 2 to the power n to k by 2 to the 

power n, then let us take the lower value. So let us define, sn of x to be equal to the 

power n, if f of x belongs to k minus 1 by 2 to the power n to k by 2 to the power n. 

This is how we are going to define the function sn, so let us look at in from the picture 

point of view. What I am trying to do is? So, because this (Refer Slide Time: 22:20) is 

the range of the function, f of x is going to be in somewhere else. 

So if f of x is above n, above this line n say for example that is happening here and this is 

the function, then for all these points my sn is going to be to be this constant. As soon as 

the function crosses n, the value of sn is going to be that point and all the other 

possibility that f of x lies in 1 of this interval. 

So let us say f of x is here, so this is my f of x and then what do I want? My value of sn 

should be such that the difference between sn and f should be small and this is the 

smallness we have created. So, I will define my sn to be the lower value and so, this is 

going to be my sn. 

So, as soon as the function is inside this strip and wherever the function is inside the strip 

the value is this lower value. If it crosses n, then that is the constant value n. So, the 

function sn x is defined to be equal to this, so this sn of x is n if f of x is bigger than or 

equal to n and if it is strictly less than n, then it belong to 1 of those small pieces and that 

is defined as the lower value of that interval, as the value or the function sn of x. 
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So, our claim is that this is the required sequence. So, claim this is the required sequence 

and so, let us first observe what is sn? sn is defined as this, so I can write sn of x to be 

equal to n times on this interval. 

So, it is n times the indicator function of the interval n to plus infinity of x. If the point 

belongs here then this number will be 1 and the value will be n plus; if it lies in that 

interval k minus 1 by 2 to the power n to k by 2 to the power n. 



The value is this so, it is this value that times the indicator function of that set. It is 

summation k equal to 1 to 2 to the power n times 2 to the power n of the indicator 

function. So, what is that set? That is nothing but the f inverse image of k minus 1 by 2 

to the power n and k by 2 to the power n open of x. 

So, from the picture and from the earlier formula we get that my function is this function 

and it is clear from this, that it implies sn is non negative, simple measureable. Why it is 

non negative? Because n is value, taken are either n or the sorry in multiplied this by k 

minus 1 by 2 to the power n that value we forgot to multiply. 

So, either you take the value k minus 1 by 2 to the power n or n and all are non negative 

number. So, this is a non negative function and it is a finite linear combination of 

characteristic functions. This is not n to infinity and this is f inverse. 

So, that we just- we should be careful. So it is n, if f of x belongs to this that means x 

belongs to f inverse of n to plus infinity and f of x belongs to this interval means if x 

belongs to f inverse of this interval. 

So, that proves that sn is measurable. Now, why are these sets measureable? It is linear 

combinations of indicator functions of sets and this set is measurable because f is 

measurable. This set is measurable, because f is measurable. So f is measurability of f, 

implies that inverse images of intervals are elements in the sigma algebra. So these are 

the elements of the sigma algebra and hence, sn of x is a linear combination of indicator 

functions of sets in the sigma algebra S, so it is a simple measurable function. 

And now let us prove that, this is S. So claim we want to show is that sn is increasing. 

So let us fix x belonging to X to show sn plus 1 of x is bigger than or equal to sn of x for 

every n. 
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So, let us look at that why is that true? Now look, what is the value of so, either f of x is 

bigger than or equal to n plus 1, which is know. Let us look at slightly differently so, I 

want to prove that sn is increasing. 

So to prove the increasing part, let us fix n so we want to look at what is sn plus 1 of x, 

say that is going to be depended upon whether- so, either it is n plus 1 or it is going to be 

some k minus 1 over 2 to the power n plus 1; for some k between 1 and n plus 1 times, 1 

over 2 to the power n plus 1. 

So what we are saying is, sn

Now, at the next stage what we are doing? We are going to divide this into two equal 

intervals: so that, this part is something divided by 2 to the power n plus 1 and this part is 

something divided by 2 to the power. So, what will be this? This will be 2 times j minus 

 plus 1of x either it will be bigger or it will be equal to n plus 

1. That is the case if f of x is bigger than or equal to n plus 1 or it will be equal to 1 of 

lower values of 1 of the sub intervals at the n plus 1th stage. 

In the n plus 1th stage we will be dividing the interval into 2 n plus 1 part. So, let me 

write this and draw this pictures slightly here. To understand what is happening So, here 

is- so, this is- here is, let us say j by j minus 1 by 2 to the power n and that is j to the 

power 2 to the power n at the nth stage where, f of x is somewhere in-between. 



1 divided by 2 to the power n plus 1 and this part would be 2 j divided by 2 to the power 

n plus 1 and that is the middle line in between. 

So, now my sn plus 1 x depending on f x, if f of x is here. If this is f of x, then sn plus 1 is 

this is the value of sn plus 1. So, this is the value of sn plus 1 and if f is here, then this is 

the value of sn plus 1; so, either f of x will be here or it will be here. 

So, if f of x is here it lies in that interval of length 2 to the power n plus 1, then the values 

are lower n point. 

So value of sn is here, but in that case what is the value of this- the value of sn plus 1. So 

this is the value of sn plus 1 x and what is the value of sn? That is always going to be 

equal to this value. 
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And if f of x is this, then this is the value of sn plus 1 x, either will be here or it will be 

here and sn plus 1 of x will always be here. So, this value is less than or equal to this 

value. So, that analysis let us just to write it is equal to this. In either case, sn plus 1 of x, 

either it will be n plus 1 or it will be which is bigger than n, which is equal to sn of x. 

If not if it is below, then the value is if it is in one of those intervals, then the value is 

going to be some k minus 1 over 2 to the power n plus 1, which is always going to be 

equal to 2 to the power n. The lower value here let us it is difficult to write those symbols 

so that lower value this k minus 1. So, this is k minus 1 that is less than or equal to j 

minus for some j and that will be equal to j minus 1 over 2 to the power n which will be 

equal to sn of x. 

Geometrically, it is quite clear that what is happening. So, either if f of x is here in 

between then either the value of sn plus 1 is this value or if f of x is here, then sn plus 1 is 

this value which is the value of sn also. 

So in either cases, this implies that hence, sn x is increasing and let us prove that sn x 

converges to f of x, that the limit is equal to f of x. So if we fix x, if x is fixed so either f 

of x is equal to plus infinity that is 1 possibility, but then if this is plus infinity, what is sn 

of x? That is always, f of x is always bigger than n and for any n sn x is going to be equal 

to n, which goes to plus infinity and sn goes to infinity. 



So, if f of x is plus infinity, then sn x is equal to n for every n and hence it goes to plus 

infinity or what is second possibility? f of x is not infinity, that means it is a real number 

so it will lie between some n and it will be less than or equal to some n. 

So it will be some 0 less than or equal to n, then in that case, there exists a n, say that this 

is happening. 

So, it also will be less than n plus 1 and so on. So, what is sn of x in that case? In that 

case sn of x is going to be some k minus 1 over 2 to the power n. 

If this is less than this, then f of x will belong to one of the intervals k minus 1 over 2 to 

the power n and k by 2 to the power n. So, implying that is the same.  
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What is the difference between sn and this? Sn is the lower value and f is something in 

between and that implies, that the absolute value of f of x are, actually f of x is bigger so 

minus sn of x will be less than k minus 1 by 2 to the power n, for some n and that means 

if this is happening for some n let us say for some no, then for every n bigger than or 

equal to no f of x minus sn

Both lies in the interval of length 2 to the power n

 of x is less than those k minus 1 by 2 to the power n, for some 

k and some n. So, it will be less than one over two to the power and the difference will 

be at the most. 

o, so it will be less than 1 over 2 to the 

power n, for every n bigger than no and that implies that sn x converges to f of x. 



So let me just go over to the construction once again, to understand because this is an 

important construction. It says that, I want to given a function f, which is non-negative 

measurable and we want to construct a sequence of simple functions, which are non 

negative, which are increasing and they converge to f of x. So what we do is, we divide 

the range and this is the range of the function, which is a subset of it. 

So divide into a partition the range, so partition into 0 to n and this is 0 and this is n, 

union n to infinity upwards so, this is the portion and the portion 0 to n is divided into 

sub intervals, each of length 1 over 2 to the power n. 

So this will look like k minus 1 by 2 to the power n, k by 2 to the power n and k equal to 

1. From 1 to how many such intervals will be there? Each of length 2 to the power n, 

total length is n so, n times 2 to the power n. 

So this is, we have partitioned range and now given a point x, f of x either it will be 

beyond n or given an n, either it will be beyond n or it will be between 0 to n. 

If it is beyond, then we define sn of x to be equal to n. So, if the value of f of x is bigger 

than n, then we define it to be equal to n and if it is not, then it will be between the 

interval 0 to n, so it will (Refer Slide Time: 37:39) fall into 1 of the sub intervals, see 

somewhere here in some k minus 1 by 2 the power n to k by 2 to the power n. 

So, we define thus the lower value of that interval, that is k minus so this is k and this is 

k minus 1, so the lower value to be equal to the value of the function sn x. 

So this sequence is increasing and see for any point x, f of x and sn will be at the most 

difference of 1 over 2 to the power n. For n large enough or if not, then sn

So, that is the idea that it converges and increasing once again comes from the fact that 

we are taking the lower value at every stage. So at any stage, either (Refer Slide Time: 

38:29) s

 will go to 

infinity. 

n plus 1 is bigger than n plus 1and in that case it will be bigger than n, also sn 

plus 1 will be bigger than sn. If not it will be in 1 of those sub intervals are length 2 to the 

power n plus 1, but how did you get those? So that this total length is 1 over 2 to the 

power n so when we want to divide the next stage from sn to sn plus 1, we divide it into 

two equal parts. If f of x is here, then sn plus 1 is the lower value here or if sn plus 1 is 



here, it is a lower value. So in either case, sn is always going to be the lower value. So 

that says it is increasing and convergent. So that proves the theorem.  

That shows what we have shown is the following: given a function f: X to 0 to plus 

infinity measurable then there exists a sequence sn or non negative functions, which are 

simple and measurable increasing to f. 

So that is what we have to prove. Let us come back to the theorem (Refer Slide Time: 

39:37) which said that, this is one of the key theorems in the motion and in for the 

concept of measurable functions, that every non negative measurable function can be 

approximated and can be obtained as a limit of non negative simple measurable 

functions. 

This non negative simple function can be slightly to be an increasing sequence, so you 

can approximate a non negative function as a limit of increasing sequence of non 

negative simple measurable functions. 

So this immediately gives us a corollary, for functions which are not non negative but let 

us before that, let me just observe that this in the proof. If the function f is bounded, then 

the sequence can be chosen to be sn, to be uniformly increasing to f and not only it 

converges point wise to f, you can actually claim that it converges to f uniformly. 
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So to prove that, it converges to f uniformly if we just observe because the function is 

bounded and so let us just observe that if the function is bounded, then that means f is a 

bounded function. 

So it is graph and there is going to be n, so that the graph of the function always stays 

below this. Once n is fix, that means f of x is always going to belong to 0 to n, for some n 

and for that f of x let us say no and no is the bound for the function then f n x minus sn of 

x is going to be less than 1 over 2 to the power no for every n bigger than no. 

So this works for all, given that bigger than 0. I can select no, say that this is true and that 

means the same application will works for every x; that means the sequence sn converge 

is uniformly to f of x. 

So this is an observation, which we may not be needing it, but it is good to observe that, 

if f is a bounded measurable function that this theorem says that, if f is a bounded 

measurable function which is non negative, then there is a increasing sequence of non 

negative simple functions uniformly converging and uniformly increasing to f. 

So this is the case for when the function is non negative in the general case,. fFor a 

general measurable function., Wwe can look at the positive part and the negative part of 

the function. Approximate the positive part by a sequence and approximate the negative 

part by a sequence of simple functions. 
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And then look at the difference of the 2two and that will give us a sequence of simple 

measurable functions, converging to f and they will not to any longer be monotonic. So 

as a consequence we have,have that if f is not necessarily non negative function and if f 

is measurable function, then there exists a sequence of simple functions converging to it. 
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So what we have saying is if f is measurable, then I can write f is equal to f plus minus f 

minus and we just now observed that f measurable, then implies both of them are 

measurable and for this there is a sequence sn, which is increasing to simple measurable 

functions  non negative increasing to this. 

There is another sequence call it as, say sn` which is again non negative simple 

measurable functions, increasing to f`. So if I look at this plus this, then that sorry this 

minus this minus, then this will converge to f. So, call this as your new sequence so this 

is called as phin and phin is a sequence of the difference of simple measurable functions 

is measurable. So this is a sn, which is a simple measurable function and sn` is a simple 

measurable function. So, phin is a simple measurable function. 

sn converges to f plus and sn

Only thing is this phi

` converges to f minus, so the difference will converge to the 

difference which is f. 

n converge to f, but we cannot say phin are increasing any more. 

Each one of them is increasing, about the difference may not be increasing. So that 



proves that for a general measurable function is measurable, if and only if the sequence 

of simple measurable functions converging to f. 

So now, let us look at some more general properties of measurable functions. let us take 

so, we are going to look at various properties: given two functions f and g, which are 

measurable, given a scalar, whether sum of the measurable functions is measurable or 

not, whether the part of measurable functions is measurable or not and whether scalar 

multiple of a measurable function is measurable or not. 

So let us list all the properties which are true: first says if f is measurable and alpha is a 

scalar, then alpha times f is also a measurable function. So for that, this alpha could 

actually be any extended real number also depending upon because we are taking only 

keep in mind I am taking only real valued functions for the time being. 

f and g are both real valued functions which are measurable and alpha is a real number. 

So the claim is alpha f, which is again a real valued function is measurable. Now, we can 

for this- we can apply our sequential criteria because f is measurable. So there is a 

sequence of simple measurable functions converging to it. 
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And so look at the sequence and let us look at the proof of this, that says f measurable 

and implies there exists a sequence sn of simple measurable functions converging to f. 

But that implies, by the properties of sequence it is alpha sn converges to f, because sn is 

simple measurable. For a constant time, a simple measurable function is again a 

measurable. So, this is a sequence of simple measurable functions converging to f and 

implies by the previous theorem f is measurable. 

The same proof works for sum of two functions. Let us say f and g are two measurable 

functions, we want to prove that f plus g is measurable. So, f measurable implies there is 

a sequence sn of simple measurable functions converging to it and g is measurable so 

there is a sequence sn` of simple measurable functions converging to it. So, that implies 

that sn plus sn` converges to f plus g. 

And this is once again for every n, this is a sum of simple measurable functions. So, this 

is again a simple measurable function. We got a sequence of simple measurable 

functions which converges to an f plus g and implies that f plus g is measurable. 

So that implies f plus and we have proved the next step namely if f and g are measurable, 

then f plus g is also measurable. 
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Let us look at next property if f is measurable, then mod f is also measurable. Why is 

mod f measurable? You can look at 2two different ways and now we have got enough 

techniques to conclude this, see either we can write mod f is equal to f plus plus f minus. 

This is observation which will play a role later on and also this is the positive part of the 

function and this is the negative part of the function, f measurable implies both f plus and 

f minus are measurable. Implies f plus plus f minus is measurable and this is precisely 

my f. 

So that is 1 way of looking at it or you can also look at some sequence point of view. f 

measurable implies, there is a sequence sn of simple measurable functions converging to 

f, but then a simple argument which work for sequence is what I have already seen that 

mod of sn converges to mod f and observation if sn is simple, then mod sn

So, either you can look at sequences  or you can look at the positive part and negative 

part. Either one will help you to conclude that if f is measurable, then mod f is also 

measurable. Let me look at (Refer Slide Time: 49:32) another property of measurable 

functions namely, that if we are seeing this property for simple functions. That if E is a 

set in the sigma algebra S and if f is measurable, then product of f times indicator 

function of E is also a measurable function. 

 is also simple 

for every n. So, this is a sequence of simple measurable function converging to mod f 

that means mod f is measurable. 
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So once again, we can take the help of the criteria just now proved. f measurable implies 

that there exists a sequence of simple measurable functions converging to f at every 

point, but once that is true if sn converges to f, then that implies look at chiE times sn that 

will converge to chiE

Because this remains multiplying by a function so, this converges to simple properties of 

sequences and now observe that this is, if s

 times f. 

n is simple measurable function, then the 

indicator function of E times sn is also a simple measurable function that converges to 



indicator function of E times. So that implies, that indicator function of E times f is 

measurable. 

In fact, we can go a step further and prove that you can multiply by the same argument. 

Suppose, f and g are measurable then for f we have got a sequence sn of simple 

measurable functions converging to f and we have got a sequence sn of simple 

measurable functions converging to sn` converging to g. 

So that implies, if I multiply sn` that converges to f times g and product of simple 

measurable functions that we have already seen, is again a simple measurable function. 

So, a sequence of simple measurable function converging to f of g, that means implies 

that f and g are measurable. 
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So product of measurable functions is also measurable. I think we will close here today 

and look at the sequences of measurable functions next time. So, today what we have 

proved? 

We have looked at the important criteria, characterization of measurable functions: a 

function f defined on a set X taking extended real valued functions is measurable, if and 

only if keep in mind it is a characterization so f measurable f function defined on x is 

measurable, if and only if we can find a sequence of simple functions converging to it. 



If f is non negative we can find this sequence of simple functions sn, which is increasing 

and converging to f. If an addition we know that f is a bounded measurable function, 

then you can have the sequence of simple functions sn which converges uniformly to f. 

so that are the important criteria. 

We have seen some applications today and we will see more applications later on also 

and then we looked at the algebra of measurable functions. We proved that if f is 

measurable, then scalar times f is also a measurable function and if f and g are 

measurable, then f plus g is also measurable, f into g is measurable and the mod f is also 

measurable. 

This is for the real valued functions and in case the functions are extended real valued 

then, while defining f plus g and f into g you have to be slightly careful because f may 

take the value plus infinity at a point and g may take the value minus infinity. Then how 

will you define f plus g? 

So for such kind of problematic sets, we can separate out a set A on which f of x is plus 

infinity and all g of x is equal to minus infinity or f of x is minus infinity and g of x is the 

plus infinity. 

 So on this set A, we may not be able to define what is f plus g. But, outside that we can 

define f plus g and this set where f is plus infinity and g is equal to minus infinity or 

other way around is a measurable set; is in the sigma algebra. We can change the values, 

we can define f plus g to be equal to anything we like and still that f plus g will be a 

measurable function. 

Modifications of the algebra of measurable functions properties still remain true when 

the functions are extended real valued. We will continue the study of sequences of 

measurable functions in next lecture. Thank you. 


