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Measurable Functions 

Welcome to lecture number 14 on measure and integration. Today, we will start looking 

at functions on measurable spaces; these are called measurable functions. 
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To start with, we assume that we have a measurable space X, S. X is a set and S is a 

sigma algebra of subsets of the set X. We have a function f defined on X taking extended 

real values; R star denotes the set extended real line; that is, the set of all real numbers 

together with plus infinity and minus infinity and with ((.)) possible operations that we 

had defined earlier. We will be looking at functions which are extended real values 

defined on the set X. 

To start with, we want to prove the following; namely, for this function f, the following 

statements are equivalent: inverse image of the open interval c, closed at infinity – if you 

take the inverse image of any such interval, then that belongs to the sigma algebra S. We 

will show that this is equivalent to saying that the inverse image of the closed interval c 

to infinity belongs to S for every c, the real number. This is equivalent to saying that the 

inverse image of the interval minus infinity to c, minus infinity closed and c open, also 

belongs to the sigma algebra S. 

Then, we will show that this is also equivalent to saying that the inverse images of all the 

intervals of the type minus infinity to c, c closed, belongs to S for every c belonging to R. 

We will show that these four are equivalent to each other and also these are all 

equivalent to the following; namely, the points f inverse of plus infinity and the set f 

inverse of minus infinity along with f inverse of every set E, E a Borel set in R, belong to 

S. 



We will show that for a function f defined on X taking extended real numbers as the 

values, these five conditions are equivalent. The methodology is going to be this: we will 

prove (i) is equivalent to (ii); (ii) is equivalent to (iii); (iii) is equivalent to (iv); and any 

one of them is equivalent to (v). 

(Refer Slide Time: 02:57) 

 

Let us start proving these properties. First property: we are given that f inverse of c to 

plus infinity belongs to S for every c belonging to R. We want to prove the same 

property for f inverse of …. Keep in mind what is f inverse; f inverse of c to plus infinity 

is the set of all points x belonging to X such that f of x belongs to c to plus infinity. This 

is a set of all points x in the domain which are mapped into the interval c to infinity. f 

inverse does not mean that the function is invertible or anything; this is a symbol used 

(Refer Slide Time: 03:42); it is a pull-back of the points which go into this c to plus 

infinity. 

We want to look at f inverse of closed interval c to plus infinity; we want to show that 

this belongs to S. To show that, let us observe the simple set-theoretic equality; namely, 

the closed interval c to plus infinity can be written as intersection of look at the open 

interval c to c minus 1 by n to plus infinity and look at the intersection of all these 

intervals. Keep in mind here is c and here is c minus 1 over n (Refer Slide Time: 04:30).  

If you take this open interval, this open interval c minus 1 by n to plus infinity includes 

this closed interval c to infinity for every n; the intersection also we had included. 



Actually, this is equal because any point which is slightly bigger than c can be excluded 

by taking n as sufficiently large. So, c minus 1 over n converges to c; that is the basic 

idea. This is a simple identity about intervals which should be easy to prove. 

This implies that the f inverse of c to plus infinity is equal to f inverse of intersection n 

equal to 1 to infinity of c minus 1 over n to plus infinity. Here is another simple 

observation that the inverse images of intersections are same as intersection of the 

inverse images. This is equal to f inverse of c minus 1 over n to plus infinity closed. We 

are given that whenever the interval is of the type c to plus infinity, c open, the inverse 

image is in S; so, each one of these sets belongs to S; S is a sigma algebra; so, 

intersection belongs to S; so, this belongs to S (Refer Slide Time: 05:49). 

Basically, what we have done is the closed interval c to plus infinity is written as an 

intersection of open intervals c minus 1 over n to plus infinity. Observing that the inverse 

images of intersections are intersections of inverse images, we get that f inverse of the 

closed interval c to plus infinity belongs S. We have proved (i) implies (ii). 

(Refer Slide Time: 06:20) 

 

Let us show that (ii) also implies (i). What is the statement (ii)? Statement (ii) says f 

inverse of the closed interval c to plus infinity belongs to S for every c belonging to R; 

that is the statement (ii). We want to now prove the same thing for open intervals. The 

idea is the open interval c to plus infinity can be expressed as union of the closed 

intervals c plus 1 by n to plus infinity, n equal to 1 to infinity. That is quite easy to 



verify; the interval c plus 1 by n to infinity is inside the interval c to plus infinity; so, this 

union is inside it; converse is easy to check, because c plus 1 over n goes to c; this is 

actually equal to c to infinity.  

Once again, observe that the inverse image of c to plus infinity is equal to f inverse of the 

union n equal to 1 to infinity c plus 1 over n to plus infinity. Once again, a simple 

observation is that the inverse images of the union is union of the inverse images; that 

gives us that this is f inverse of c plus 1 over n to plus infinity. We are given that each 

one of them belongs to S. This is a union of sets in S; S is a sigma algebra; it implies that 

this set also, f inverse of c to plus infinity, belongs to S (Refer Slide Time: 08:10). 

Hence, we have shown that (ii) implies (i). So, (i) implies (ii) and (ii) implies (i). Thus, 

we have shown that the statement (i) implies statement (ii) and the statement (ii) implies 

(i). If you see the proofs carefully, in both of them we have just tried to represent a 

closed interval as an intersection of open intervals; also, in the (ii) implies (i) we have 

tried to use the fact that you can represent an open interval as a union of closed intervals. 

Similar facts are used in proving the remaining statements; let us just prove the 

remaining statement, namely, (ii) implies (iii). 

(Refer Slide Time: 09:01) 

 

Let us prove (ii) implies (iii). The statement (ii) is regarding closed intervals. We are 

given that f inverse of this belongs to S for every c belonging to R; that is the statement 

(ii) which is given. We want to show that f inverse of minus infinity to c open belongs to 



S for every c belonging to R. If you look carefully, this interval and this interval are 

related with each other (Refer Slide Time: 09:33). They are complements of each other. 

The given statement implies that because this belongs to S, X minus f inverse of c to plus 

infinity also belongs to S. Here is a small observation: the complement of the inverse 

image is nothing but the inverse image of the complement. This set is equal to f inverse 

of R star minus c to plus infinity. That is equal to f inverse of minus infinity to c open, 

because here c is closed; so, this also belongs to S, because S is a sigma algebra; if a set 

belongs, its complement belongs; so, this belongs to S. All these statements are 

reversible; if this belongs, then its complement belongs; these are all if and only if 

statements. So, (ii) implies (iii) is obvious by taking complements. 

(Refer Slide Time: 11:01) 

 

Let us prove (iii) implies (iv). The statement (iii) implies what is given to us is f inverse 

of minus infinity to c open belongs to S for every c belonging to R. Here, we want to 

conclude this closed interval…. Note that the closed interval to c is equal to… We want 

to include the point c inside; it is nothing but look at minus infinity to c plus 1 over n – 

the open interval. Here is c and here is c plus 1 over n (Refer Slide Time: 11:49). This 

interval – the closed interval – is already inside c plus 1 over n for every n. 

If I take the intersection of all this, that will give us the closed interval minus infinity to 

c; it is similar to the earlier argument. This implies that f inverse of minus infinity to c is 

equal to f inverse of the intersection; that is, intersection of the inverse images – f inverse 



of minus infinity to c plus 1 over n open; each one of them belongs to n and so this 

belongs to S. So (iii) implies (iv). If f inverse of minus infinity to c open belongs, then f 

inverse of minus infinity to c closed also belongs. So, (iii) implies (iv). 

(Refer Slide Time: 12:49) 

 

Let us prove the converse statement namely (iv) implies (i) (Refer Slide Time: 12:45). 

We are given f inverse of minus infinity to c closed belongs to S for every c belonging to 

R. We want to look at f inverse of the open interval c. Once again, it is a similar 

situation; that is, minus infinity to c; it is here (Refer Slide Time: 13:14). We want to 

look at the open interval. Let us look at the union of intervals minus infinity to c minus 1 

over n, n equal to 1 to infinity. 

Here is c minus 1 over n (Refer Slide Time: 13:31). These are all inside it – closed 

interval; the unions will give us this open interval. Once again, taking the inverse images 

minus infinity to c is equal to f inverse of the union n equal to 1 to infinity; f inverse of 

the union is union of the inverse images; that gives us minus infinity to c minus 1 over n. 

Each one of them is given to be inside S; that implies that this belongs to S; so, (iv) 

implies (iii) is also true. 

What we have shown till now is that the first four statements are equivalent to each other 

(Refer Slide Time: 14:27). The first statement was about intervals of the type c to 

infinity, open; the next one was c closed; next was minus infinity to c. Inverse images of 

all these types of intervals are inside S; all these statements are equivalent to each other. 



Now, let us prove that this implies that f inverse of plus infinity and f inverse of minus 

infinity and f inverse of every Borel set is inside S. 

(Refer Slide Time: 15:05) 

 

Let us assume any one of (i) to (iv) and hence all because they are equivalent. So, we 

know that f inverse of an interval belongs to S for every interval I which looks like c to 

plus infinity or looks like closed c to plus infinity or it looks like minus infinity to c open 

or minus infinity to c closed. For all these four types of intervals, any one of the first four 

statements implies they belong to S. 

Now, look at any other interval. Supposing I is an open interval a to b. We can write this 

open interval a to b as minus infinity to b open interval intersection with the open 

interval a to plus infinity. We know that inverse image of this interval belongs to the 

sigma algebra and inverse image of this belongs to the sigma algebra (Refer Slide Time: 

16:21). That will give us that the inverse image of a, b is equal to f inverse of minus 

infinity to b intersection f inverse of a to plus infinity. Both belong to the sigma algebra 

and so this will belong to the sigma algebra S.  

What I am trying to say is that any one of the statements (i) to (iv) implies that inverse 

image of every open interval also belongs. Similarly, we can take actually a closed 

interval also; for example, a closed interval a, b can be written as minus infinity to b 

intersection a to plus infinity. A similar argument will imply that inverse of this interval 

also belongs to S. 
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If we assume any one of the statements (i) to (iv), that implies that f inverse of every 

interval belongs to S for every interval. Recall that any open set in R is a countable union 

of open intervals; say, the open set is U; then, U can be written as union of Ijs, j equal to 

1 to infinity, Ij

So, f inverse of U will be equal to f inverse of disjoint union of I

s open. Actually, you can write it as a disjoint union of open intervals also 

– countable disjoint union of open intervals. 

js which is the same as 

union of f inverse of Ijs, j equal to 1 to infinity; actually, disjoint is not needed, but 

anyway, that is okay. f inverse of every open interval belongs to S; so, this belongs to S 

(Refer Slide Time: 18:24). If we assume any one of the four conditions, then that implies 



that f inverse of every open set is in the sigma algebra. Here is the sigma algebra 

technique: consider the class A of all subsets in BR

(Refer Slide Time: 19:30) 

 such that f inverse of E belongs to S. 

Just now we showed that the open sets are inside A; it is easy to check that A is a sigma 

algebra. Let us check that A is a sigma algebra. 

 

Why is A a sigma algebra? Clearly, the empty set and the whole space R belong to A, 

because X and the empty set belong to S. Secondly, let us observe that if a set E belongs 

to A, that means that f inverse of E belongs to S; that implies that f inverse of E 

complement belongs to S, because S is a sigma algebra; that is same as f inverse of E 

complement belongs to S. 

It implies E complement belongs to A; so, A is closed under complements. Finally, if 

Ens belong to A, it implies that f inverse of En belongs to S; it implies union of f inverse 

of Ens also belongs to S, because S is a sigma algebra. Hence, that implies that union of 

inverse images is inverse image of the union; so, union En also belongs to S; it implies 

union En

This is a sigma algebra including open sets. So, it must include the Borel sigma algebra 

inside, but it is already a subclass of Borel sets; so, A is equal to the class of Borel sets. 

That means if we assume any one of those first four conditions in the statements that we 

just now stated, then that implies the statement that f inverse image of every Borel set is 

s belong to A. We have verified that A is a sigma algebra (Refer Slide Time: 

20:53) 



in the sigma algebra S (Refer Slide Time: 21:24). Let us verify that the inverse images of 

the points plus infinity and minus infinity are also….  

(Refer Slide Time: 21:33) 

 

Note that plus infinity can be written as intersection of n to plus infinity, n equal to 1 to 

infinity. f inverse of plus infinity is equal to intersection n equal to 1 to infinity f inverse 

of n to plus infinity. f inverse of this is equal to f inverse of the right-hand side (Refer 

Slide Time: 21:59). The right-hand side is the intersection; so, it is the intersection of the 

inverse images. Each one is an interval; inverse image of each one of the intervals 

belongs to S; so, intersection belongs to S; so, this belongs to S. 

A similar argument for minus infinity will imply, because minus infinity can be written 

as intersection of n equal to 1 to infinity of minus infinity to minus n. The inverse image 

of this will be intersection of inverse images and will imply that f inverse of minus 

infinity belongs to S. We have shown that if you assume any one of those four conditions 

stated above, then that implies that the inverse image of the point plus infinity and 

inverse image of every Borel set belong to the sigma algebra S.  

The converse statement is obvious, because every interval is a Borel set. Saying that 

statement (v) implies any one of the four statements above is obvious, because every 

interval is a Borel set; that is a special case. We have proved this theorem; namely, for a 

function f defined on a set X taking extended real-valued functions, all these five 



conditions are equivalent to each other (Refer Slide Time: 23:19). If you assume any one 

of them, then other ((.)) will also hold.  

(Refer Slide Time: 23:40) 

 

A function which satisfies any one of these conditions is called a measurable function. A 

measurable function on X taking extended real values is a function which satisfies any 

one of those five conditions as stated here (Refer Slide Time: 23:54). These are going to 

be an important class of functions for us to deal with. Let us look at some examples. The 

first example is that of what is called the indicator function of a set. Let us look at what 

is called the indicator function of a set X. 



(Refer Slide Time: 24:15) 

 

Let us take any set X and A is a subset of X. We define a function called the chi of A; 

this is the Greek letter chi (Refer Slide Time: 24:27) and lower suffix A. It is a function 

on X taking two values 0 or 1. This is called the characteristic function or the indicator 

function. This function takes a value; at a point x, the value is 0 if x does not belong to 

A; at the point A, the value is 1 if x belongs to A. 

Here is the set X; here is the set A. On A, it gives the value 1; outside A, it gives the 

value 0. It is a two-valued function; the points where it takes the value 1 is exactly the 

points in the set A; so, this is called the characteristic function or the indicator function 

of the set A. This is called the indicator function of the set A. 



(Refer Slide Time: 25:42) 

 

 

X is a set; S is a sigma algebra; we have got the indicator function A of the set A on X 

taking, of course, only two values. We can consider it as a function taking extended real 

values. We want to know if it is measurable. Suppose the indicator function of A is 

measurable. That implies that if I look at chiA

If the indicator function is measurable, then we get A belongs to S. Conversely, if A 

belongs to S, we claim that chi of A is measurable. For that, look at chi

 inverse of the singleton point 1, that 

belongs to S, but what is that value? What are the points where it takes the value 1? That 

is precisely A; that is the set A; so, A belongs to S.  

A inverse of any 

interval I. What is that going to be? The inverse image of an interval is going to be equal 



to the empty set if 0 or 1 does not belong to the interval I, because then there is no point 

which goes to the interval; it is equal to A if 0 does not belong to I and 1 belongs to I; 

similarly, it is A complement if 0 belongs to I and 1 does not belong to I; it is equal to X 

if both 0 and 1 belong to I. 

It is an empty set or it is a set A or A complement or X and all of these are elements of 

the sigma algebra S. The inverse image of every interval is in S; hence, the indicator 

function is a measurable function. What we have shown is that the indicator function is 

measurable (Refer Slide Time: 28:00). 

(Refer Slide Time: 28:03) 

 

This indicator function is defined as 1 if x belongs to A and 0 if x does not belong to A. 



(Refer Slide Time: 28:09) 

 

The characteristic function is measurable if and only if the set A belongs to S; this is the 

simplest example of a measurable function. Let us consider a linear combination of the 

indicator functions. Suppose s is a function defined on X such that s of X is equal to ai 

times the indicator function of a set Ai at (( )) at x, i equal to 1 to n. Look at sets A1, A2 

up to An – subsets of X; look at their indicator functions and take a linear combination of 

them – ai times the indicator function of Ai

(Refer Slide Time: 29:09) 

; such a function is called a simple function 

on X. Such a function is called a simple function on X. 

 



Our claim is that a simple function is measurable if and only if each one of the Ai

(Refer Slide Time: 29:20) 

s 

belongs to S. 

 

We want to prove the simple function S which is sigma ai indicator function of Ai, i 

equal to 1 to n is measurable if and only if…. Note: to check measurability, we have to 

look at s inverse of an interval I. What is that going to be? The function s takes values 

small ais on the set Ai; this is the main thing to be observed – a finite linear combination 

of the indicator functions is a function which takes only finite member of values, namely, 

a1, a2 up to an and the value small ai is taken on the set capital Ai

What will be s inverse of I? That will be union of those sets A

.  

i union over i such that ai 

belongs to the interval I. Clear? Let us once again observe that s takes values A1, A2 up 

to An. Look at the inverse image of an interval I; look at those is such that ai belongs to 

the interval I;. the pull-back of this will be the set Ai. Look at the unions of these Ais; so, 

s inverse of I is union of Ai

If each A

s.  

i belongs to S for every i, this will imply that s inverse of intervals belongs to S. 

It implies that s is measurable because the inverse image of every interval belongs to I. 

This interval is in extended real numbers (Refer Slide Time: 31:11); plus infinity and 

minus infinity are included in this; so, it is measurable. Conversely, if s is measurable, 

then look at s inverse of singleton ai; that will be equal to Ai. Hence, measurability 

implies this belongs to S. Of course, here, one has to take slight care; we can assume that 



all the Ais are distinct, because if they are not distinct we can put together those Ais into 

one box. That says that a simple function is measurable if and only if all the sets 

involved in the representation ((.)) ai times chi of Ai

(Refer Slide Time: 32:16)  

 are all measurable. 

 

As observed just now, we have given a simple function s; we can also write it in the 

form, we can represent as, summation ai indicator function of Ai where all the ais are 

distinct and these capital Ais are disjoint, because if sets are not disjoint we can put them 

together; if the same value is taken on two distinct sets, then we can put them together in 

one box and call that set as a new Ai. This is sometimes called a standard representation 

of a simple function where the ais are distinct and these capital Ais form a partition of 

the whole space X. A simple function is nothing but a finite linear combination of 

indicator functions; that is an example of a measurable function. 



(Refer Slide Time: 33:12) 

 

We will study some more properties of this class of simple measurable functions. Let us 

start; let s, s1 and s2 be simple measurable functions and alpha be a real number. First of 

all, we want to observe that every constant function is a simple measurable function. 

What is a constant function? A constant function is nothing but a function which takes a 

single value everywhere on the set. We can think of it as this: if the constant value taken 

is c, then it is c times the indicator function of the whole space X. Every constant 

function is simple measurable, because it is a constant multiple of the indicator function. 

Alpha times a simple function is also a simple measurable function because of the fact 

that if… 



(Refer Slide Time: 34:08) 

 

If a simple function s is equal to summation ai chi Ai, i equal to 1 to n, then alpha times s 

is equal to sigma alpha ai times chi of Ai

The next property we want to check is that if s

, i equal to 1 to n. alpha s is again a simple 

function and only its values have changed, but the sets on which these values are taken 

remain the same. Clearly, it indicates that if s is measurable then alpha s is also a 

measurable set. 

1 and s2 are two simple measurable 

functions, then s1 plus s2 is also a simple measurable function. Let us take a function s1 

which is sigma ai chi Ai, i equal to 1 to n. Let us say s1 has the representation sigma ai 

chi Ai and s2 has the representation j equal to 1 to m bj chi of Bj

We have a standard representation that union A

. Whenever one is 

dealing with more than one simple function, the idea is to try to bring the sets involved in 

the representation to be the same. 

i is equal to X; here, union Bjs is also 

equal to X. Then you can write s1 as…. Each Ai can be decomposed into a union of the 

Bjs. You can write i equal to 1 to n ai chi of Ai intersection Bj and union over js. Each 

Ai can be intersected with union of Bjs. Here is an observation: if you have two sets A 

and B and they are disjoint, then A union B is equal to chi of A plus chi of B; this we 

leave for you to verify: the indicator function of the union of two sets is equal to sum of 

the indicator functions whenever the sets are disjoint. 



(Refer Slide Time: 36:49) 

 

Using that, we can write s1 as summation i equal to 1 to n ai summation over j equal to 1 

to m chi of Ai intersection Bj. This is the same as summation over i summation over j ai 

chi of Ai intersection Bj. Similarly, for the second simple function s2 which had the 

representation bj chi of Bj, j equal to 1 to m, we can write this as summation over i 

summation over j bj chi of Ai intersection Bj

What we are saying is that whenever we are given two or a finite number of simple 

functions, we can assume without loss of generality that the indicator functions involved 

are of same sets. s

. 

1 is equal to summation over i summation over j ai times indicator 

function of Ai intersection Bj. Similarly, s2 can be written as summation over i 

summation over j bj indicator function of Ai intersection Bj. Then, what is s1 plus s2? s1 

plus s2 is nothing but summation over i summation over j of ai plus bj indicator function 

of Ai intersection Bj

That should be clear, because if I take a point x, then if x belongs to A

. 

i intersection Bj, 

then s1 gives the value ai and s2 gives the value bj; sum will give the value ai plus bj; 

outside, the value is 0; so, one does not have to bother. s1 plus s2 can be given the 

representation summation over i summation over j ai plus bj of this (Refer Slide Time: 

38:55). Since Ai belongs to the sigma algebra and Bjs belong to the sigma algebra, that 

implies Ais intersection Bjs also belong to the sigma algebra. So, s1 plus s2 is written as 



a linear combination of indicator function of sets which are in the sigma algebra; that 

implies s1 plus s2

(Refer Slide Time: 39:30) 

 is measurable. 

 

This proves the property that the class of simple measurable functions is closed under 

addition. The first property said it is closed under scalar multiplication; this says it is 

closed under addition. Next, let us take any fixed set – any set E in the sigma algebra – 

and multiply S with the indicator function of E; then, the claim is this is also a simple 

measurable function; that comes from a very simple observation. 

(Refer Slide Time: 39:59) 

 



Let us take a set E belonging to S and s is a simple function which is sigma ai indicator 

function of Ai. Then, s times the indicator function of E is nothing but summation i equal 

to 1 to n ai indicator function of Ai

If we use this, then the function s times indicator function of E can be written as sigma a

 times indicator function of E. Here is an observation: 

the product of indicator functions is nothing but the indicator function of the intersection; 

the product of indicator functions is equal to indicator function of the intersected set. 

i 

indicator function of Ai intersection E. It is again a linear combination of indicator 

functions of sets Ais intersection E. Since Ai

(Refer Slide Time: 41:29) 

s belong to the sigma algebra and E belongs 

to the sigma algebra, this belongs to the sigma algebra (Refer Slide Time: 41:07). The 

function s multiplied by the indicator function is a linear combination of characteristic 

functions of sets which are in the sigma algebra; this implies s into indicator function of 

E is measurable; that proves our next property.  

 

Using this, it is easy to check that a product of simple measurable functions is also a 

simple measurable function. 



(Refer Slide Time: 41:43) 

 

For that, let us take s1 is sigma ai indicator function of Ai and s2 is sigma j equal to 1 to 

m bj chi of Bj. Then, s1 multiplied with s2 is nothing but this; we can do distributive law; 

1 to n ai of chi Ai summation bj 1 to m chi of Bj. We can write this as summation over i 

1 to n ai summation over j 1 to m chi of Ai chi of Bj into that constant bj; let us write that 

bj

Anyway, we need not have done that much; we could have just said that is chi, indicator 

function, of A

 here (Refer Slide Time: 42:20) 

i times s2; each one of them is a simple. Anyway, this can be written as 

summation over i 1 to n summation over j equal to 1 to m ai bj chi of Ai intersection Bj. 

Once again, s1 into s2 is a linear combination of indicator function of sets where Ai 

belongs to S because s1 is measurable, Bjs belongs to the sigma algebra S because s2 is 

measurable; the intersection is measurable; so, s1 into s2 is measurable and product of 

simple measurable functions is again measurable (Refer Slide Time: 43:40). 
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Let us go a step further. Given two simple functions s1 and s2, let us define what is called 

maximum of these two function s1 V s2. What is s1 V s2? This is the function whose 

value at a point x is defined as the maximum of the numbers s1 of x and s2 of x. At every 

point x, compare the values of s1 and s2; whichever is higher, define the value to be that 

number. The claim is that s1 V s2

(Refer Slide Time: 44:26) 

 is also a simple measurable function. Once again, the 

technique is same as for the sum. 

 



 

Let us write s1 is equal to sigma ai chi of Ai, i equal to 1 to n and let us assume s1 is 

simple. That means all the Ais are in the sigma algebra S. Similarly, s2 is measurable. 

Let us write s2 as j equal to 1 to m and bj chi of Bj where Bjs belong to S. Now, we bring 

them to the common sets as before. Let us write s1 as sigma over i sigma over j ai chi of 

Ai intersection Bj and s2 equal to sigma over i sigma over j bj chi of Ai intersection Bj

Then, s

.  

1 maximum s2 at any point x…. We want to define what will be at any point x the 

value of this (Refer Slide Time: 45:26). Look at the point x; it will be in either one of the 

sets Ai intersection Bj. Then, s1 will give the value ai and s2 will give the value bj and 

the maximum of that has to be put. It is maximum of ai, bj if x belongs to Ai intersection 

Bj. So, s1 V s2

This is once again a finite linear combination of characteristic function where the sets 

involved are in the sigma algebra. This will imply s

 is nothing but summation over i summation over j of this (Refer Slide 

Time: 45:57).  

1 wedge s2 belong to S (Refer Slide 

Time: 46:18). A similar argument will imply that the corresponding minimum of the two 

simple measurable functions is also a measurable function. What is the minimum 

function? 
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s1 wedge s2 at a point x is defined as the minimum of s1 of x, s2 of x; that is called the 

minimum of the two functions. We want to show that also is a simple measurable 

function. Once again, if s1 is defined as this and s2 is defined as this (Refer Slide Time: 

46:48), then what is s1 wedge s2? This can be written as simply sigma over i sigma over j 

minimum of ai, bj into indicator function of Ai intersection Bj. Once we write it that 

way, it becomes clear that the minimum also is a… This implies that s1 wedge s2 is a 

measurable function whenever s1 and s2

(Refer Slide Time: 47:32) 

 are measurable functions.  

 



Not only the maximum but the minimum also is a simple measurable function whenever 

s1 and s2

(Refer Slide Time: 47:57) 

 are measurable functions. Let us finally prove that if s is simple measurable, 

then mod s is also a simple measurable function. There are many ways of looking at this.  

 

If s is equal to sigma ai chi of Ai 1 to n, then what is mod s? Mod s is a function defined 

at x to be equal to mod of s of x. Mod s is nothing but sigma mod of ai, i equal to 1 to n 

into indicator function of Ai; this also is measurable, because if s is measurable, each Ai 

is a measurable set and mod s is a linear combination of indicator function of sets which 

are measurable. 



(Refer Slide Time: 48:49) 

 

At this point, it is worth noting a few things about mod of a function (Refer Slide Time: 

48:48). Let us take any function f from X to R or R star. Let us define f plus of x to be a 

function on x as follows. It is equal to f of x if f of x is greater than or equal to 0; it is 0 if 

f of x is less than 0. What we are saying is look at the value of the function f of x; if it is 

bigger than or equal to 0, then you keep the value of function as it is; as soon as it goes 

below, you cut it off by the value 0. 

If this is the function f of x, then what is f plus? When it goes below, you keep the value 

to be 0 because is going below; because it is up, you keep it as it is (Refer Slide Time: 

49:53). Now, it is going below and you keep the value to be 0; now, it is going up. This 

is the function f plus; this is called the positive part of the function; this is called the 

positive part of the function. 



(Refer Slide Time: 50:24) 

 

Similarly, we can define what is called the negative part of the function to be as follows. 

Given a function f from X to R star, the negative part of the function f of x is defined as 

0 if f of x is bigger than 0. As soon as it becomes positive, we make it 0; we make it 

equal to minus of f of x if f of x is less than or equal to 0; keep in mind the negative. If 

this is the graph of the function, then what do we do?  

We look at the graph; as soon as it is below, we keep it as it is; it is 0 if f of x is positive; 

so, on the positive part we keep it here; when it is below, we reflect it up. So, it is this, 

this, this, this and so on (Refer Slide Time: 51:16). This is called the negative part of f. 

Let us observe that the function f is written as the positive part minus the negative part. 

Every function can be represented as the positive part and the negative part; both these 

functions are nonnegative functions; mod of f can be written as f plus plus f minus; that 

is the mod f. 



(Refer Slide Time: 52:04) 

 

You can also think of the positive part f plus as the maximum of f and the constant 

function 0; f minus can be thought of as maximum of minus f and 0; this is another way 

of looking at it. For a simple function, saying that mod f is measurable can also be 

looked at because if s is measurable, simple function is measurable, the maximum of 

simple function and 0 is measurable; the positive part is measurable; the negative part is 

measurable; hence, mod f will be also measurable.  

We will continue properties of measurable functions in our next lecture. In the next 

lecture, we will prove an important theorem; namely, we will look at how sequences of 

measurable functions behave whether the limits of sequences of measurable functions are 

measurable or not. Thank you. 


