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Lebesgue Measure and Its Properties 

Welcome to lecture twelve on Measure and Integration. If you recall, last time we looked 

at the extension of a measure from algebra to the sigma algebra generated by it and 

slightly beyond the class of all outer measurable subsets. 

Today, we are going to look at some special applications of this; a particular case of that 

extension theory for the real line. That is the topic for today’s discussion namely, 

Lebesgue Measure and Its Properties. 
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For the extension theory, we are going to apply it for the case X is equal to real line. 

The set is the real line. The algebra A is the algebra generated by all intervals in the real 

line and mu on this algebra is the length function that we had defined. We had seen that 



  

the length function on the algebra generated by all intervals is a countably additive set 

function. 

The outer measure induced by this length function, which is denoted by lambda star is on 

all subsets of the real line and that is called the Lebesgue outer measure. So, the outer 

measure induced by the length function is called the Lebesgue outer measure. 
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Let us just look at what is the Lebesgue outer measure for a subset of the real line. If you 

recall, we defined it as outer measure of a set E is… look at all possible coverings of a 

set E by elements in the algebra. 

Here, the algebra being the algebra generated by intervals, it is finite disjoint union of 

intervals. So, we can write this outer Lebesgue measure as the infimum over summation 

lambda of the intervals Ii where, the intervals Ii

So, lambdas all of E is the infimum of the sums of the lengths of the intervals which 

form a covering of E. We can take these intervals to be disjoint because if not, we can 

make them as disjoint. So, that is Lebesgue outer measure for a set E. 

’s form a covering of the set E and these 

intervals are pair-wise disjoint. 

The class of all Lebesgue outer measurable sets; lambda star measurable sets is called the 

sigma algebra of Lebesgue measurable sets. 



  

The sets that are outer measurable with respect to lambda star is called the sigma algebra 

of outer measurable or Lebesgue measurable sets and is denoted by L suffix R. Just to 

indicate, L for the Lebesgue and R for the real line. In case there is no confusion, we will 

denote LR

(Refer Slide Time: 03:28) 

 by simply L. So, this is the class of all Lebesgue measurable sets. 

 

If you recall, we had also defined the sigma algebra of Borel subsets of real line and that 

was the sigma algebra generated by all intervals. A being the algebra generated by 

intervals, the sigma algebra generated by finite disjoint union of intervals is same as the 

sigma algebra generated by all intervals. That is same as the definition of the Borel 

sigma algebra of the real line. 

We had already seen these properties. So, the length function in particular is also defined 

for all Borel subsets because the sigma algebra generated by A is inside the class of all 

outer measurable sets that is L. 

So, we have got that S of A, that is, a Borel sigma algebra is inside the class of all 

Lebesgue measurable sets. So, for all Borel subsets, the notion of length is defined. This 

is called the Lebesgue measure. 

Let us just summarize what we are saying. We are saying that the extension theory when 

applied to the particular case of the real line gives us the notion of length for a class of 

subsets of the real line, which are nothing, but the class of outer Lebesgue measurable 



  

sets. That includes the class of all Borel subsets. So, that also gives us the notion of 

length for all Borel subsets of the real line. 

The triple are Lebesgue measurable sets, the length function as extended by the 

extension theory. This triple is called the Lebesgue measure space. So, the extension 

theory applied to the real line gives us the notion of the Lebesgue measure space and it 

extends the notion of length from intervals to the class L of all outer Lebesgue 

measurable sets. 

(Refer Slide Time: 05:41) 

 

Let us recall that the sets, Borel subsets form a subset of the class of all Borel sets, which 

is a sub class of the class of all Lebesgue measurable sets. Of course, Lebesgue 

measurable set is a sub class of all subsets of real line. 

The question is, can we say something more regarding these three classes namely Borel 

subsets, Lebesgue measurable sets, and P R. 

Let us observe which we have done during outer measures that the Lebesgue measurable 

sets are characterized by the Borel subsets of the real line union the null sets. So, what 

are the null sets? Sets in R; subsets of R such that N is contained in a Borel set of 

measure 0. 

Equivalently, one can also define it as sets of outer Lebesgue measure 0. So, BR is a 

subset of L. 



  

We know that outer measure 0 sets are also measureable. So this… and we said that this 

class is nothing but… This forms the sigma algebra and that is equal to the Lebesgue 

measurable sets. 

That means, the BR union N is equal to L. So, all null sets are part of L, but we want to 

characterize what is the relation between BR

At present, we only know that the Borel sets are subsets of all Lebesgue measurable sets, 

which is a subset of P R. 

 and L and what is the relation between L 

and P R. 
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To say something more, we need to look at what is called a special subset of the real line 

called Cantor’s ternary set. So, we are going to discuss and spend some time on a special 

subset of real line, which is called Cantor’s ternary set. 

Cantors ternary set is an example of a set that has very nice properties and it is useful 

both from the topological point of view as well as measure theoretic point of view. So, 

let us look at what is called Cantor’s ternary set. 
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Ternary; It is called Cantor’s ternary set because it was given by the mathematician 

George Cantor; first defined by George Cantor. Ternary set, which are because it 

involves ternary expansions of real numbers. 

What we are going to do is a construction. We are going to construct a Cantor’s ternary 

set. As step one, let us look at the interval 0 to 1.one. I will first describe this process of 

Cantor’s ternary set construction and then, we will analyze its properties. So, what is the 

first step? The step is, divide this into three equal parts. So, that is 1 by 3 and 2 by 3. 

Remove the middle open portion. So, this open portion is removed from the interval 0, 1. 

What does it give? It gives us two pieces – 0 to 1 by 3 and from 2 by 3 to 1. So, it gives 

us two closed intervals. 

At the first step; at the first stage, having removed the middle one third of the closed 

interval 0, 1 and middle one third open interval, we get these two. Now, we repeat that 

process again with these two sub intervals. So, from each of these sub intervals, remove 

the middle one third portion; that is, middle one third is 1 by 9 and 2 by 9, and here, the 

middle one third will be equal to 7 by 9 and 8 by 9 (Refer Slide Time: 09:50). 

So, this is the middle one third portion, which we are going to remove at the second 

stage. That will give us four sub intervals and we will continue this process. Eventually, 

something will be left. So, continue. 



  

Question is, what is left? What is left is called Cantor’s ternary set. Let us analyze and let 

us denote this set, the Cantor’s ternary set by the letter C. How do we mathematically 

construct this? So, that is a question. 

For that, let us start with the first stage that is A0, that is, the closed interval 0, 1. After 

having performed the first stage, I write what is left as A1

(Refer Slide Time: 11:30) This portion is the first interval and this portion is the second 

interval. That is, I 1 

. That consists of two disjoint 

intervals – 0 to 1 by 3 and 2 by 3 to 1. So, it consists of two disjoint intervals. Let us 

write them as, at the first stage one union the second one first stage the second one. 

1 and this one is I 1 2

Let us see what it will be at the nth stage. If you continue (( )) this process, how many 

intervals will be there at the nth stage? So, there will be intervals… How many of them? 

We start with 1. At the next stage 2, at the next stage 4, and so on. So, there will be 

disjoint intervals j equal to 1 to 2 to the power n. There will be 2 to the power n closed 

subintervals of 0, 1. Let us write them as I n 

. At the second stage, we will be left with four 

disjoint closed intervals. Let us write them as union I second stage j; j equal to 1 to 4. So, 

that is going to be 2 to power 2. 

j

What is A

. So, these are the intervals. 

n? An is the union of those intervals which are left at the stage (( )) at the nth 

stage; what we want? As we continue this process, we want what is C? So, 

mathematically, how do we write C? 
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We can write it as the Cantor set, C. We can define it as an intersection of An’s where, n 

is equal to 1 to infinity. Each An is a subset of the previous one. So, eventually, let us 

write what is left as an intersection of all these An

Let us make some observations about this Cantor’s ternary set. The first observation is 

that the end points of the open intervals removed are in C. Say, for example, 0; 0 is not 

going to be removed and 1 is not going to be removed. At the first stage, we removed the 

open middle one third. So, 1 by 3 is not going to be removed and 2 by 3 is not going to 

be removed. At the next stage, 1 by 9 will not be removed and 2 by 9 will not be 

removed. Similarly, 1 by 3, we have already listed. Then, 7 by 9 will not be removed, 8 

by 9 will not be removed, and so on. 

’s. So, this is what is called Cantor’s 

ternary set. 

For example, these points will not be removed. They will stay in this process of 

removing middle one third open interval from each sub interval at every stage. So, that 

means… Thus, the class C the set C is a non empty set. It is non empty. So, that is the 

first observation. There is something left behind. 

The second observation that we want to show… In fact, C is uncountable; that it is an 

uncountable set. How do you prove that C is uncountable? What we are going to do is, 

we are going to define a map from the closed interval 0, 1 to C. To prove this, we will 

define a map, which is one one. 



  

We will define a one one map from 0, 1 to the Cantor’s ternary set. We will prove that 

the cardinality of the set C is at least as much as 0, 1 and C being a subset of 0, 1, it 

cannot be more than that of 0, 1. So, cardinality of C will be same as cardinality of 0, 1. 

That may seem a very strange observation to you that from C, we have removed… From 

the interval 0, 1 we have removed so many pieces and still what is left is as much as the 

points in 0, 1. So, these are the properties of infinite sets. Actually, they are the 

characterizing properties of infinite set. Interval 0, 1 is an uncountable set and from that, 

we are removing sub intervals and still what is left behind is as much as 0, 1. 

(Refer Slide Time: 16:43) 

 

Let us prove this fact, namely, there is a one to one map for this. For this. Let us start… 

Let us take a point x that belongs to 0, 1 and consider its binary expansion. What is the 

binary expansion? The binary expansion of a point in 0, 1 is written as; 
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X can be written as point a1a2a3…an and so on; where, each an

Let us assume… See there are two different ways of writing say for some points, there 

are two different ways of writing binary expansions. So, we will fix one of the ways and 

say there is a unique binary expansion for every point in 0, 1. So, we will fix that binary 

expansion process. 

 is equal to 0 or 1. So, that 

is a binary expansion of every point. Essentially, the idea is that the interval 0, 1 can be 

divided into two parts – name first part as 0, second part as 1 and C at each stage where it 

lies. So, that is, 0 1 1. 

Now, what we do is the following… Construct a point y with ternary expansion b… (( )) 

So, y is equal to point b1b2 and bn; where, for every n, bn is nothing, but two times an

In the binary expansion, look at the nth place – either it will be 0 or 1. Double it and call 

that as b

. 

n. So, bn is twice as much as an. So, each bi is either going to be 0 or it is going 

(Refer Slide Time: 19:00) to be two. So, this is the ternary expansion. Note that y 

belongs to 0, 1 because it is dash… It is dot b1b2b3 and so on; no integral part. So, it is 

going to be part of… It is a point in 0, 1 and it has… In the ternary expansion, the only 

numbers that come are 0, two times an; an

In the ternary expansion of y, which is in 0, 1, only 0 or 2 appear and that implies that y 

belongs to C because in the construction of a Cantor’s ternary set, we have removed the 

 is 0 or 1, or it is 0 or 2. 



  

middle one third. So, in the ternary expansion, the number 1 is not going to appear. So, 

each one is… So, this is a part of… So, this is the observation we make.  

Starting with a point x that belongs to 0, 1 with binary expansion a1, a2, and an

We have got a map from 0, 1 to C and the claim is that this map… (Refer Slide Time: 

20:32) This is… It is one-one. That is obvious because for every point x, we have got 

this binary expansion a

, construct 

a point y; send it to the point y. So, this x is sent to the point y, which is… Again in 0, 1. 

In fact, it belongs to… So, let us write more specifically it belongs to C. 

1, a2, a3, and an; the unique binary expansion. So, if you take two 

different points x1 and x2

(Refer Slide Time: 20:58) 

… Let us try to write this mathematically that this is… 

 

Let us take a point x1 with binary expansion a 1 1, a 1 2, a 1 n, and so on. Let us take 

another point with unique binary expansion that we have fixed the methodology. So, a 2 

1, a 2 2, and a 2 n

X

, and so on. 

1 not equal to x2. So, if x1 is not equal to x2 that implies there exists some stage n0 

such that a 1 n0 will not be equal to a 2 n0 and that implies that two times a 1 n0 will not 

be equal to two times a 2 n0. This is b 1 n0 and this is b 2 n0. So, that means y1… If we 

have y1 that is, point b 1 1, b 1 2 up to b n n

Y

 and so on. 

2 is the other point; the image of x2 that is, b 2 1, b 2 2, b 2 n, and so on, then so… If 

this is so (Refer Slide Time: 22:18), then y1 is not equal to y2. 



  

(Refer Slide Time: 22:31) So, that means this process of sending x…; taking x with 

binary expansion is this and constructing y with ternary expansion is this. So, if you send 

x to y, this gives us a map from 0, 1 to C, which is one-one and hence…. 
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This implies as a consequence. Hence, the cardinality of C is same as cardinality of 0, 1. 

If you recall, the cardinality of 0, 1; that is… Let us write this implies that C is 

uncountable because 0, 1 is uncountable. Thus, C is an uncountable set. This follows 

from our construction that C is an uncountable set. 

In fact, now, let us try to calculate. Note that C, which is equal to intersection of An’s 

implies that for every n, C is a subset of An. What was An

At the nth stage, what will be the length of each…, where the length of each I n 

? That was a disjoint union of 

intervals I n j; j equal to 1 to 2 to the power n. 

j. What 

is the length of the intervals that are left at the nth stage? That is, one over… Let us look 

at the construction. At the first stage, (Refer Slide Time: 24:24) when we removed two… 

At A1

At the nth stage, how many 2 n intervals of each of length… How many will be left? 2 to 

the power n intervals – each of length how much? So, here, the length of each I n 

, two intervals were left – each of length 1 by 3. So, this is 1 by 3, this is 1 by 3, 

this is 1 by 3, and this is 1 by 3. So, four intervals at the second stage of length 1 by 3. 

j. At 

the second stage, it is 1 by 3. The second stage is 1 by 3 and nth stage will be 1 over 3 to 



  

the power 2 n minus 1. So, that will be the length of each one of them. There are 2 to the 

power n of them. So, what is the total length? 

Sigma lambda of I n j

(Refer Slide Time: 26:15) 

; j equal to 1 to 2 to the power n, that is, 2 to the power n intervals 

– each has got the same length. So, divided by 3 to the power 2 to the power n minus 1. 

Observe that this number goes to 0. That is, 2 to the power n by 1 over 3 to the power n; 

that goes to 0 as n goes to infinity. So, that means what? That means C can be covered 

by…; for every n, by 2 to the power n intervals whose length is this (Refer Slide Time: 

26:11) and that can be made as small as they want. 

 

So, that means the outer Lebesgue measure; lambda star of C is equal to 0 because what 

is lambda star of E? It is a infimum of the sums of the intervals that cover the set C and 

here, we have shown that C is contained in An

Of course, Lebesgue measurable sets are a subset of power set of real line. Now, but C is 

uncountable and R is uncountable. So, what does this imply? That means, this implies 

, which is a finite disjoint union of 

intervals. The total length of these intervals is becoming smaller and smaller. So, that is 

length of C. So, that implies that C is a lambda star null set. Hence, C belongs to 

Lebesgue measurable set and not only that C is (( )). In fact, what we know is something 

more – that if E is any subset of C, then that implies that lambda star of E is also equal to 

0 because lambda star is (( )) and that implies that E also belongs to L. Hence, all subsets 

of C; power set of C is a sub class of Lebesgue measurable sets. 



  

that L has as many elements as P of R. So, what is the meaning of this – has as many 

elements as P of R? That is same as the cardinality. 

If you know what is cardinality; cardinality of L is same as the cardinality of the power 

subset of real line and if you know that the cardinality of real line, which is… We are 

going to call as cardinality of continuum, which is denoted by small letter c and this is 

denoted by 2 to the power c (Refer Slide Time: 28:36). 

If you look at… So, what does that prove? That proves that if you look at from the 

cardinality point of view; if you look at how many elements are there in the class of all 

Lebesgue measurable set, then it says cardinality of Lebesgue measurable sets is as much 

as the cardinality of all subsets. So, if you look from the cardinality point of view, you 

cannot say that the class of all Lebesgue measurable sets is a proper subset of the class of 

all subsets of the real line, but that does not also imply that all subsets of real line are 

Lebesgue measurable. So, the questions still remains undecided whether the class of all 

Lebesgue measurable sets is a proper sub class of all subsets of real line. To decide this 

question is a bit difficult and that relates to some fundamental questions in set theory. 

(Refer Slide Time: 29:53) 

 

Let us look at… What we have shown just now, let us just recapitulate that lambda star 

of C is equal to 0 and that says that power set of C is a subset of L. Hence, there are at 

least as many elements in L as 2 to the power c. So, that is the cardinality of the 

continuum. 



  

(Refer Slide Time: 30:07) 

 

So, we get the cardinality of L and power set is same; both have got same cardinality. So, 

the question still remains is L a proper subset of P R? If you recall the answer to this 

question, A is related to some of the fundamental questions in set theory. 

(Refer Slide Time: 30:33) 

 

If you recall, we proved what is called Ulam’s theorem. We did not prove it really, but 

we mentioned what is called Ulam’s theorem and I said that one can read the proof of 

this in the text book that we have mentioned. That statement of the Ulam’s theorem says, 



  

– Assuming continuum hypothesis, Lebesgue measure cannot be extended to all subsets; 

all of real line. 

There is something called continuum hypothesis in set theory. I will not explain at this 

stage what is continuum hypothesis because we will be going straightly off stream, but it 

is what the mentioning here that the set theory is based on certain Axioms. (( )) So, 

whatever modern mathematics we are doing is based on Axiomatic set theory. There is 

a… which has some kind of some Axioms on which we are we can deal with set theory, 

but there is something called continuum hypothesis, which relates to the subsets of real 

line and so on. That is not part of the Axioms of set theory and that is why it is called 

continuum hypothesis. Some people believe in continuum hypothesis and do 

mathematics according to that and some people do not believe in it. 

If you assume continuum hypothesis, then Ulam’s theorem says that you cannot extend; 

that means not all subsets of real line are measurable. Another result which one can use 

and which is again not part of the Axiomatic set theory is the following, which says that 

supposing you assume what is called Axiom of Choice. Axiom of Choice is another 

Axiom that is not part of the Axiomatic set theory. One can either accept it as part of set 

theory and do mathematics or do not accept as part of it and do mathematics. So, 

mathematicians those who accept Axiom of Choice are supposed to be doing what is 

called non constructing mathematics because there are some existence theorems, which 

assume Axiom of choice helps in proving some theorems that are existence in nature. For 

example, proving that every vector space has a basis requires the need of using Axiom of 

Choice. You cannot prove it if you do not assume Axiom of Choice. There are many 

results in mathematics, which are which use Axiom of Choice and which are not true if 

you do not assume Axiom of Choice. 

What is Axiom of Choice is basically saying; very heuristically saying given a non 

empty collection of non empty sets you can pick up one element from each set and form 

a new set. So, it is how sets can be constructed when the sets are not indexed by a family 

that is finite in number essentially. 

It says – given any indexed family of non empty sets and that indexing set is also non 

empty, you can pick up one element from each one of these sets and form a new set. So, 

using this one can show there exist sets in the real line that are not Lebesgue measurable. 



  

So, we will prove this result. Assuming Axiom of Choice, there exist non-Lebesgue 

measurable sets in real line. Let us prove the existence of non measurable sets by 

assuming Axioms of Choice. 

(Refer Slide Time: 34:25) 

 

Let us start. What we are doing is existence of non-measurable sets. That is what we are 

discussing. We want to construct a subset of the real line that is not Lebesgue 

measurable. To start with, consider once again the interval 0 to 1. This is the interval 0 to 

1. 

On this, I am going to define a relation. For x related to y if x minus y is a rational 

number. For x and y, take two points x and y in 0, 1 and say that they are related with 

each other if and only if x… their difference is a rational number. 

The first observation claims (( )) I will just write claims. One; that this x related to y is an 

equivalence relation. What does equivalence relation mean? It means it is reflexive, 

symmetric, and transitive. What is reflexive? x related to x; that is obvious because x 

minus x is 0 and that is a rational number. 

Secondly, if x is related to y; that means x minus y is a rational number. So, the 

difference the negative of that, that is, y minus x also is a rational number. So, that 

implies that y is related to x. If x is related y, then y is related x. That is called symmetry; 

that the relation is symmetry. 



  

The third one is… Let us put x is related to y and y is related to z. x related to y means x 

minus y is rational and y related to z means y minus z is rational. If it is a difference that 

implies that x minus z is a rational. So, that implies that x is related to z. It is an 

equivalence relation; it is (( )) It is a reflexive, symmetric, and transitive. Every 

equivalence relation given on a set partitions the set into equivalence classes. So, that is 

the basic idea; that 0, 1 can be partitioned into equivalence classes by this relation. 

So, that implies… 

Second; that implies… Let us write that 0, 1 can be written as a disjoint union of 

equivalence classes. So, let us write it as Eα; alpha belongs to some indexing set and let 

us call it as A; Eα equivalence class. Recall equivalence class means Eα intersection Eβ is 

empty for alpha not equal to beta. That is why I have written it as a union with this sign. 

That means equivalence classes – they cover 0, 1 and they are disjoint. So, that is the 

partition of the set on which equivalence classes are defined. So, that is. The third step is 

from each Eα, select some element xα and form the set. Let us call it as E, which is xα

What we are saying is, using this equivalence relation partition (( )) interval 0, 1 into 

equivalence classes. From each equivalence class, pick up one element; exactly one 

element x

; 

alpha belongs to the indexing set A. 

α. Select one element xα. Choose one element xα from each equivalence class 

and put them together in a box; call that E and claim is that E is a set. (Refer Slide Time: 

39:05) This is the place where we are using Axiom of Choice. That means Eα is a 

collection of… non empty collection of non empty sets. From each, we can pick up one 

element and form this set. This is possible only if we assume Axiom of Choice. So, here 

is the place where we are using Axiom of Choice. So, from each equivalence class we 

have picked up one element and constructed a set E. 
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Obviously, this set E is a subset of 0, 1 because each equivalence class is a subset of 0, 1 

and from each, we have picked up one element. So, this is a subset of 0, 1. 

Let us write… Let rationals in minus 1 to 1 be written as r1, r2, rn and so on. Rationals in 

the interval minus 1 to 1 is a countable set. So, they can be enumerated; they can be 

written in the form of a sequence. We are not saying r1 is smaller than r2 or anything, but 

we are just giving a numeration of the rationals. They are countably many, so we can 

write them as a sequence and construct define a set En, which is E plus rn

Let us observe where is this set E

; n bigger than 

or equal to 1. Construct a set En. This 

n. E is in 0, 1 and each rn is between minus 1 to 1. So, 

what can we say about the set E plus rn? E can be 0 to 1 and rn

At the most, this sum can become minus 1, where the elements of E

 could be minus 1 to 1. So, 

that means each one of them is the subset of minus 1 to 2. 

r are smaller. 

Smallest one is 0 and the possibility here is minus 1. The largest possible is rn is equal to 

1 and E also element is 1. So, 1 plus 1 is 2. So, for every n, En is a subset of 0, 1 of 

minus 1 to 2. So, this implies that the union of En’s is also contained in minus 1 to 2. 

That is one observation. Also, if I take x that belongs to 0, 1; if I take an element x in 0, 

1, that implies x is related to xα for some alpha because the equivalence classes cover 0, 

1. So, every element x in 0, 1 has to belong to one of the equivalence class. Say it 

belongs to Eα, which means it is related to xα the element that we have picked. So, that 



  

implies that x minus xα is a rational. X minus xα

X is in 0, 1 and x

 related means the difference is rational 

and where will that rational be? 

α is in 0, 1. (Refer Slide Time: 42:42) This is a rational in minus 1 to 1 

because both could be 1. That means, that is, x minus xα belongs to En because if it is a 

rational in minus 1 to 1, that must be equal to some rn. That means x is equal to xα plus 

rn and that means it is in En. What we are saying is, for every x in 0, 1, x minus xα 

belongs to… So, that implies that x is equal to xα plus rn and that belongs to En. So, x 

belongs to En

(Refer Slide Time: 43:46) 

. 

 

The second observation is that 0, 1 is inside the union of En’s. So, that is what we have 

got. This construction we have got is following that 0, 1 is contained in union of E plus 

rn

Now, here is one observation that… Let us move on to observe claim that these sets E 

plus r

, that is En; n equal to 1 to infinity and that is contained in minus 1 to 2. We have used 

Axiom of Choice in this construction of the set E. 

n intersection E plus rm are disjoint sets for n not equal to m. To prove this, let us 

take an element x, which is common. So, if not x belongs to E plus rn, that means x is 

equal to xα plus rn, and it is also equal to… It is also in E plus rm so, it is also equal to 

some e beta plus rm. That implies x is related to xα and x is related to xβ. That this x is 

related to (( )) That implies either xα is equal to xβ if… That should be same and that is 

possible implies that alpha is equal to beta. (Refer Slide Time: 45:25) If alpha is not 



  

equal to beta, then this is not possible. So, that says… That means that these two sets are 

disjoint. 

(Refer Slide Time: 45:45) 

 

This is what we have got. As a consequence, let us write this as that 0, 1 is contained in a 

disjoint union of E plus rn

Till now, we have not done anything except we defined a equivalence relation and using 

Axiom of Choice, we constructed a set E and this as this property. Now, suppose assume 

that E is Lebesgue measurable, then there are two possibilities – one, Lebesgue measure 

of E is equal to 0, but that implies Lebesgue measure of E plus r

; n equal to 1 to infinity and that is contained in minus 1 to 2. 

n is equal to 0 for every n 

because Lebesgue measure is translation-invariant and that implies that the Lebesgue 

measure of the union E plus rn

The second possibility is that the Lebesgue measure of E is strictly bigger than 0, then 

that implies Lebesgue measure of minus 1 to 2; this closed interval (Refer Slide Time: 

47:17) is bigger than or equal to Lebesgue measure of this union because that is subset of 

it. That is equal to sigma lambda of E plus r

 is equal to 0. That implies… Because 0, 1 is inside this, 

that means Lebesgue of 0, 1 is equal to 0, which is a contradiction because Lebesgue 

measure of 0 to 1 is equal to 1. 

n and that is equal to sigma lambda of E 

because for every n it is same. This being a positive quantity, added infinite number of 

times, this is equal to plus infinity. 



  

This is again a contradiction because lambda of minus 1 to 2 is actually equal to 3 and 3 

equal to infinity is a contradiction. (Refer Slide Time: 48:00) Either case, this assumption 

cannot be true. So, this is a set, which is in 0, 1 and which is not measurable. 

What we have shown is the following that (Refer Slide Time: 48:16) if we assume 

Axiom of Choice, then there exist non-Lebesgue measurable sets in the real line. Without 

Axiom of choice or without continuum hypothesis, it is not known that you can construct 

subsets of the real line, which are not measurable non-Lebesgue measurable. 

In fact, there is a theorem, which says that the condition that assume Axiom of Choice… 

Actually, if you put this (Refer Slide Time: 48:46) as an Axiom in set theory that every 

subset of the real line is Lebesgue measurable; if you take that as an Axiom and if your 

set theory Axioms are already consistent, then adding this new Axiom to your set theory 

will not make any difference; it will still leave is consistent. 

The distance of non-measurable sets get related to fundamental questions in set theory. 

So, on this side, we will leave it as it is saying that if you either assume continuous 

hypothesis or you assume Axiom of Choice, then there exist sets, which are not 

Lebesgue measurable. 

Let us tend to the other side. Can we say that the Borel sigma algebra, the Borel subsets 

of real line form a subset of this form a sub class of Lebesgue measurable sets. What is 

the relation between these two? Can we say that the Borel sets form a proper subset of 

the class of all Lebesgue measurable sets? 



  

(Refer Slide Time: 49:48) 

 

One can show… We will not prove most of the things here because they are slightly 

technical. First observation is that the Borel sigma algebra of the real line, which is the 

sigma algebra generated by all intervals is the same as the sigma algebra generated by all 

open intervals because one can show that every open set in real line is a countable union 

of open intervals, that is, using the basic topology in the real line. So, topological 

properties of real line come into play and not only that, in fact you can take open 

intervals with only rational end points. If you generate the sigma algebra by them, that is 

same as the Borel sigma algebra. This needs a proof. We will not prove it, but indicate 

what is involved here. 

The Borel sigma algebra… This is a countable family – open intervals with rational end 

points. You take a countable family of intervals and generate the sigma algebra and that 

is BR

Using these properties one shows… (Refer Slide Time: 51:05) Using this construction 

one shows that the cardinality of the sigma algebra of Boral sets is same as that of c that 

of the continuum and that is called the real line, whereas the cardinality of the Lebesgue 

measurable sets was 2 to the power c. That means there exist sets. So, looking at the 

cardinality says that there exist sets, which are Lebesgue measurable, but are not Borel 

sets, but construct… actual construction of these sets is not very easy. It is possible to 

. One can show that the cardinality of this process of generating is exactly equal to 

c. 



  

construct such sets, which are Lebesgue measurable, but are not Borel sets. They are 

called Analytical sets / Analytic sets. For that, we refer the (( )) our text book for more 

details. Those of you who are interested; they should refer the text book for more details. 

What we have shown today is that in the special case of the extension theory, we get the 

(( )) of the length function on a class of sets, which are called Lebesgue measurable sets, 

which include the Borel sigma algebra of subsets of the real line. The cardinality of the 

Lebesgue measurable sets is same as the cardinality of all subsets. 

If you make some assumptions like continuum hypothesis or Axiom of Choice, you can 

show existence of sets, which are not Lebesgue measurable; otherwise, you cannot show. 

There is no such proof known. On the other side, the Borel sigma algebra has got 

cardinality c, which is much stricter strictly less than the cardinality of Lebesgue 

measurable sets. 

We will continue looking at the properties of Lebesgue measurable sets viz-a-viz, open 

sets, close sets, and the group (( )) on real line in the next lecture. Thank you. 


