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Module No. # 03 

Lecture No. #11 

Measurable Sets 

Welcome to lecture 11 on Measure and Integration. In the previous lecture, we had 

defined, what is called an outer measurable subset. We had started looking at the 

properties of the outer measurable sets. 

We will continue the study of properties of the outer measurable sets today and if time 

permits at the end, we will specialize the case, when the space is in the real line. So, let 

us recall what we have been doing. So, we were looking at properties of measurable sets. 

Let us just recall, what is an outer measurable set. 

(Refer Slide Time: 00:55) 

 

A subset E of X is said to be an outer measurable or mu star measurable. If mu star of 

any set Y is written, it is written as mu star of Y intersection E plus mu star of Y 

intersection E compliment. So this condition must be satisfied for every subset Y of X 
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and then we said, let us denote by S star and the class of all mu star measurable sets. We 

gave an equivalent way of verifying, when a set is outer measurable. So, the condition is 

that a set E is measurable, if and only if every subset Y in X with mu star of Y is finite. 

We have the condition that mu star of Y is bigger than or equal to mu star of Y 

intersection E plus mu star of Y intersection E compliment. 

So, instead of just saying that for every subset Y, this equality must be true. We have to 

only verify for those subsets Y of X for which mu star of Y is finite. Instead of equality, 

we have to verify only bigger than or equal to one-way inequality because the other way 

round is always true for mu star being countably sub additive. 

(Refer Slide Time: 02:23) 

 

So, we will use this condition when we require. The first observation that we proved last 

time was that A is the given algebra on which the measure is defined. So, the first claim 

we proved is that every element in the algebra is also a measurable set. So, A is a subset 

of S star. 

The second property, we were looking at was - if S star is an algebra of subsets of X and 

mu star restricted to S star is finitely additive. We had already observed that a set E is 

measurable, if and only if, its compliment is measurable. So, S star A is closed under 

compliments and we only have to verify that it is closed under unions and that proof 

working out in the last time and we had done it; let us just revise it again because we are 

going to need those inequalities. 
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(Refer Slide Time: 03:25) 

 

So, let E1 and E2 be measurable sets to show that E1 union E2 is measurable. E1 is 

measurable and implies that for every subset Y contained in X. Let us have that special 

condition less than finite, we know that mu star of Y is equal to mu star of Y intersection 

E1 plus mu star of Y intersection E2, sorry E1 compliment. This is true for every subset 

Y with that property. Let us replace, Y by Y intersection E1 union E2. 

So, replace this Y so then we get so then what we have we have mu star of Y intersection 

E1 union E2 is equal to… so, Y is replaced by Y intersection E1 union E2, but E1 is a 

subset of it. So, the first term is just mu star of Y intersection E1 plus the second term 

becomes mu star of E1 union E2 intersection E1 compliment. So, first term will give you 

only empty set, union Y intersection E2 intersection E1 compliment. So, E1 compliment 

intersection E2 and that is what we get by using the fact, E1 is measurable and E2 is also 

measurable. Thus, for every set Y, a corresponding equation holds for E2 compliment, 

but we will replace Y by Y intersection E1

So, mu star of Y intersection E

. 

1 compliment is equal to mu star of Y intersection E1 

compliment intersection E2 plus mu star of Y intersection E1 compliment intersection E2 

compliment. So, using the fact that E2 is measurable, we have written mu star of Y 

intersection E1 as the set intersection E2 the set intersection E2 compliment. Now, in 

these two equations, (Refer Slide Time: 06:14) look at this set this term Y intersection E1 
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compliment intersection E2 and that is also sitting here. So, we will compute the value of 

this and put it to that equation. So, let us do that. 

(Refer Slide Time: 06:27) 

 

From this second equation, we put the value there and so we have got from these two 

equations (Refer Slide Time: 06:34). Thus, mu star of Y intersection E1 union E2 that is 

the left hand side of this equation. so that is equal to the first term, mu star of Y 

intersection E1 plus Y intersection E1 compliment intersection E2 is equal to mu star of 

Y intersection E1 minus that thing (Refer Slide Time: 07:04). So, mu star of Y 

intersection E1 compliment minus mu star of Y intersection E1 compliment intersection 

E2

So, we can take one term on the other side and in general that will not be possible, if Y, 

one of the terms is equal to plus infinity. So, the condition mu star of Y is finite is being 

used here. So, we get using the fact that E

 compliment. Now, one should note down here - we have taken one term on the other 

side. So, this is possible because all the sets involved have finite outer measure and this 

is the equation of real numbers. 

1 and E2 are measurable and we get this 

equation (Refer Slide Time: 07:53). From here, let us take this negative term on the other 

side and that implies mu star of Y intersection E1 union E2 plus mu star of Y intersection 

E1 compliment intersection E2 compliment is equal to mu star of this term; Y 

intersection E1 and the second term plus mu star of Y intersection E1 compliment. Now, 

using the fact that E1 is measurable and this is same as mu star of Y. so, we have shown 
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that for every subset Y with mu star of Y finite. It’s measure mu star of Y can be written 

as mu star of E1 Y intersection E1 union E2 plus mu star of Y intersection E1 

compliment intersection E2 compliment, but note this set is nothing but E1 union E2 

compliment. So, this implies that E1 union E2 is measurable. Now, for the special case, if 

E1 and E2 are disjoint, it means E1 intersection E2 is empty set and that implies that E1 is 

contained in E2 compliment or E2 is contained in E1 compliment, either one is true. So, 

note this is true (Refer Slide Time: 09:53). In that case, let us go back and look at the 

first equation because E1 and E2 were measurable. 

So, we had this condition. So, in this equation (Refer Slide Time: 09:58), this is true for 

every Y. So, let us replace this Y by E1 union E2 and that will give us the measure, mu 

star of union of E1 union E2. So, in this we are going to replace Y by E1 union E2. 

(Refer Slide Time: 10:18) 

 

So, let us just put that equation here and look at what we are doing. So, in this equation, 

in the star we are putting Y equal to E1 union E2 and keep in mind they are disjoint. So, 

the left hand side will be mu star of E1 union E2 equal to right hand side. The first term is 

mu star of E1 plus and in the second term; E2 is a subset of E1 compliment because E1 E2 

are disjoint. This implies E2 is a subset of E1 compliment . So, that means this is nothing 

but, plus mu star of E2 mu star of E2. So, when E1 and E2 are disjoint, mu star of E1 

union E2 is mu star of E1 plus mu star of E2. Thus, it means mu star is finitely additive. 



 6  

(Refer Slide Time: 11:34) 

 

So, we have proved this property, namely: S star is an algebra of subsets of X and mu 

star restricted to S star is finitely additive. Next step is to go a bit further. 

(Refer Slide Time: 11:50) 

 

We want to prove that whenever you got a sequence of sets in S star, which are pairwise 

disjoint, then their union is also in S star. Mu star of the union is equal to summation of 

mu stars of An. That means, we are going to show that S star is closed under pairwise 

disjoint union of sets in even countably infinite and mu star is countably additive. 
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(Refer Slide Time: 12:32) 

 

So, let us prove this property. Let us take An belong to S star n equal to 1, 2 and so on. 

Pairwise disjoint, that is, An intersection Am is empty for n, not equal to m. so, we start 

A1 belonging to S star. A1 measurable implies that mu star of any set Y can be for every 

Y contained in X. I can write this to be equal to mu star of Y intersection A1 plus mu star 

of Y intersection A1

Now, use the fact that A

 compliment. 

2 is measurable. So, leave the first term as it is Y intersection A1 

plus A2 is measurable. So, measure of mu star of this set can be written as mu star of A1 

compliment intersection A2 plus mu star of Y intersection A1 compliment intersection 

A2 compliment. So, this term mu star of Y intersection A1 compliment is written as mu 

star of Y intersection A1 compliment plus intersection A2 plus mu star of Y intersection 

A1 compliment intersection A2 compliment. So, here we have used the fact that A2 is 

measurable. Now, observe that A1 and A2 are disjoint. So, A2 will be a subset of A1 

compliment and this set is nothing but, Y intersection A2. So, I get the first term same as 

mu star of Y intersection A1. The second term is mu star of Y intersection A2. The third 

term is mu star of Y intersection A1 compliment intersection A2 compliment. So, in the 

first, we used A1 is measurable. In the second, we used A2 is measurable and used A1 

and A2 are disjoint. If we continue this process, after n steps we will have this is (Refer 

Slide Time: 15:01) equal to… The second step gives you, mu star Y intersection A1 plus 

mu star of Y intersection A2. So, after n steps this will have mu star of Y intersection Ai 
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i equal to 1 to n plus one term will be there, which is mu star of Y intersection A1 

compliment intersection up to An compliment. 

(Refer Slide Time: 15:31) 

 

So, let us write this last term in terms of union. It is equal to summation of i equal to 1 to 

n mu star of Y intersection Ai plus mu star of Y intersection union Ai i equal to 1 to n 

compliments. So, this term is represented in terms of compliments of the unions. So, this 

is after n steps. For every n, we have got mu star of Y can be written as this (Refer Slide 

Time: 16:07) and now, it is true for every n. Here, I would like to write this union as 1 to 

infinity, if I do that, I will be make this set bigger. 

Hence, the compliments will be a smaller set. So, if I replace this by Y intersection union 

i equal to 1 to infinity of Ai compliment. This set is smaller than this set (Refer Slide 

Time: 16:40). So, mu star of this will be bigger than mu star of this. So, if I write mu 

star, then this term is bigger than this term. So, this will be bigger than or equal to 

summation i equal to 1 to n and this term as it is. Y intersection Ai plus this (Refer Slide 

Time: 17:01). So, what we have done in the second term, where it has union 1 to n. I 

have taken union 1 to infinity and because of compliments this term will be smaller. So, 

instead of equality, I have got the inequality and this happens for every n. So, I can let n 

go to infinity and this will be bigger than or equal to summation i equal to 1 to infinity 

mu star of Y intersection Ai plus mu star of Y intersection union i equal to 1 to infinity 

Ai compliments. Now, mu star is countably sub additive. 
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So, the first term is bigger than or equal to mu star of Y intersection union Ai i equal to 1 

to infinity. Second term, as it is mu star of Y intersection union 1 to infinity Ai’s 

compliment. So, using the fact that for every n, An is a measurable set. We are able to 

say that mu star of Y is bigger than or equal to mu star of Y intersection the union Ai’s 

plus mu star of Y intersection, the compliment of the unions. So, that implies that unions 

Ai 1 to infinity belongs to S star is a measurable set and not only that, we can say 

something more. So, in this equation star, let us put Y is equal to union of Ai’s. So, what 

will we get? 

(Refer Slide Time: 18:57) 

 

Let us do that substitution and see, what we get. So, in this equation; in star, take Y equal 

to union of Ai’s. Then left hand side is mu star of union Ai 1 to infinity is bigger than or 

equal to summation i equal to 1 to infinity mu star of Y is union Ai plus this is union and 

compliment and that is empty set, mu star of that is equal to 0. So, that is equal to 0. So, 

what we get is- mu star of the union of Ai’s is bigger than or equal this, by sub additivity. 

Mu star of the union Ai’s is less than or equal to summation 1 to infinity mu star of Ai’s. 

So, it implies that mu star is countably additive on S star. 
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(Refer Slide Time: 20:14) 

 

We have got the following property and what we have done till now is- S star, as a 

consequence of all these properties, we can say that S star is a class of all measurable 

sets is a sigma algebra of subsets of X and mu star on this is countably additive. So, we 

started with a measure mu on a algebra A of subsets of a set X. We defined an outer 

measure via this on all subsets of subset X. Then, we picked up a subclass namely: S star 

of sets, which are mu star measurable. we have shown that mu star, which in general is 

countably sub additive is actually countably additive on S star, the sigma algebra of 

measurable sets. 

Why it is a sigma algebra? Because we already shown it is an algebra and it is closed 

under countable disjoint unions. So, any algebra, which is closed under countable 

disjoint unions is automatically a sigma algebra and we have shown this. It gives us a 

way of defining measures on ascending measures. 
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(Refer Slide Time: 21:38) 

 

Before doing that, let us observe one more thing. Let us look at sets E in X, whose outer 

measure is 0. These are called sets of null outer measurable sets. So, the claim is every 

set, whose outer measure is 0 is automatically measurable. 

(Refer Slide Time: 22:06) 

 

So, let us check that and let E be a subset of X. Mu star of E equal to 0, for every Y 

contained in X mu star of Y intersection E is equal to 0 because Y intersection E is 

contained in E because mu star is monotone. So, this is 0 and thus mu star of Y is bigger 

than or equal to mu star of Y intersection E compliment because again Y intersection E 
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compliment is a subset of this. I can add 0 to it and that is equal to mu star of Y 

intersection E compliment plus mu star of Y intersection E. That is precisely saying that 

the set E is measurable. 

(Refer Slide Time: 23:25) 

 

That shows the class of mu star null sets are also measurable. So, this class N is inside S 

star. So, let us summarize the process. Now, what we have? So, let us start with a 

measure mu on a algebra; a mu is a measure. A is a algebra of subsets of the set X, if mu 

is sigma finite, then there exists a unique extension of mu to the sigma algebra generated 

by A. How do we conclude that? The conclusion for that is as follows: 

(Refer Slide Time: 23:59) 
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So, mu is on the algebra and it is sigma finite; given. So, we define outer measure mu 

star from it, which is defined on all subsets of X. It is countably sub additive. We picked 

up the class of measurable sets S star. So, if we restrict mu to this, let us call it as mu bar. 

There is a restriction of mu to the smaller class S star. Keep in mind, S star is the class of 

measurable sets. So, what is mu star? Mu bar is equal to mu star and restricted to S star. 

This is a measure (Refer Slide Time: 24:55), S star is sigma algebra and we know that 

this is an extension. So, from mu we come to mu bar, an extension of mu from the 

algebra to S star. Note: All sets in A are measurable. So, the sigma algebra is also inside 

here. 

A is inside S of A, which is inside S star and which is inside all subsets of X. so, mu is 

defined here. We get mu star here and when we restrict, we get mu bar and that is same 

as mu bar on S of A. So, we get measure mu bar on S of A and that is same as mu bar on 

S of A. so, what is mu bar? Mu bar is the restriction of the outer measure mu star to the 

sigma algebra generated by A. That is inside the class of measurable set. So, it is a well 

defined measure because mu is sigma finite. Suppose, there was another extension by 

some other method to the sigma algebra, then by the uniqueness of measures on the 

sigma algebras, we know that there is only one possible extension and that we have 

already proved. In that case, an extension exist, if two measures agree on the algebra, 

they will also agree on the sigma algebra, provided they are sigma finite. So, uniqueness 

follows from that theorem. 
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(Refer Slide Time: 26:37) 

 

So, we have got, if mu is a sigma finite measure on an algebra, then we can extend it to 

the sigma algebra generated by it. This is the extension process. So, one has to start with 

a measure mu on an algebra. Recall, we already have extended it from a semi algebra to 

the generated algebra. Essentially, it says, if we have a measure on a semi algebra of 

subsets of a set X, the measure mu is sigma finite. Then, it can be uniquely extended to a 

sigma finite measure on the sigma algebra generated by that algebra. 

(Refer Slide Time: 27:26) 
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In fact, we have proved something more. We have actually shown that not only mu, 

which is defined on the algebra extends to S of A, the sigma algebra generated by it. 

Actually, it extends to a class S star, which not only includes S of A. It also includes the 

class of mu star null sets, sets of outer measure mu 0. So, let us denote the class of the 

sigma algebra generated by S of A and the null sets by a new name. So, what we are 

saying is- one can show that this S star, the class of all outer measurable sets, which is 

sigma algebra and includes S of A. 

It also includes N So, it includes this union and we are writing it as sets of the type. So, S 

A union of N is not the union of these two classes. It denotes sets of the type E union N, 

where E belongs to S of A and N is a null set. So, take sets, which are in the sigma 

algebra generated by A, adjoined to it any mu star null set. So, look at this new collection 

and one can show that S star is same as E union N. It involves two things: one is- this 

collection is a sigma algebra and the other is- this sigma algebra is same as S star. We 

will not go into the details of this, as they are slightly technical. We will assume this, but 

it gives us new notion. So, let us define that. 

(Refer Slide Time: 29:03) 

 

So, let X be a nonempty set. S, a sigma Algebra of subsets of the set X. The pair X, S 

from now onwards will be called as a measurable space So, a measurable space is a pair, 

where X is a set and S is a sigma algebra of subsets of it. This elements (Refer Slide 

Time: 29:30) of S normally are called measurable sets. Suppose, we are given a 
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measurable space X, S and we are given a measure on the sigma algebra S. Then we get 

a triple X, S and mu and it is called a measure space. So, a measure space signifies a 

ordered triple, where the first element X is a set X, the second one is a sigma algebra of 

subsets of a set X and mu is a function defined on the sigma algebra taking non negative 

values and it is countably additive; it is a measure. So, this triple is called a measure 

space 

(Refer Slide Time: 30:35) 

 

 So, what we have done in our extension process? We can now summarize it as follows: 

Given a measure on a algebra, A of subsets of a set X. What we did? We constructed two 

measure spaces: one was- X S of A the sigma algebra generated by it mu star, which is 

the outer measure induced by mu. We know mu star on S of A is a measure and. we also 

have the measure space X S star and mu star. Mu star on S star is the class of all outer 

measurable sets. 

So, we get these two measures spaces. Keep in mind, S of A is a subset of S star. We 

gave the relation between these two, namely: the measure space and this is in some sense 

we can say it is a bigger measure space because the sigma algebra S star is bigger than S 

of A. This measure space has a special property, namely: if we take any set E in X, mu 

star of E is 0, then E belongs to S star. So, for example, this is a very special thing. 

Suppose, you take any subset A of E, then by monotone property mu star of A also will 

be 0. So, that also will be inside S star. S star includes all mu star null sets. Such a 
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measure, normally is called a complete measure space. So, our construction has given the 

measure space X S star mu star. It is a complete measure space, namely: all sets of outer 

measure 0 are elements of S star and that is a nice condition to have. We will see it later 

on. So, this is called a complete measure space. So, a complete measure space is a space 

such that the sigma algebra S star or sigma algebra includes all null sets, whose measure 

is 0. 

(Refer Slide Time: 32:42) 

 

In general, a measure space need not be complete. For example, this measure space need 

not be complete. So, there is a theorem, which says every measure space X S mu can be 

completed. This process of completion of a measure space is a slightly technical one. 

The basic idea is- given a measure mu on a algebra S of subsets of a set X collect 

together all sets, whose outer measure mu star is 0 and adjoin them or add them to the 

sigma algebra S. That means, generate a new sigma algebra by taking S and the sets, 

which are null sets. So, that gives a bigger sigma algebra and on that bigger sigma 

algebra, one can show, we can extend that measure mu to the sigma algebra. New 

measure space becomes complete. So, the process is very much similar to looking at X S 

of A and mu star and these are the X S star and mu star. So, we will assume this theorem 

that every measure space X S mu can be completed. So, if you are interested in looking 

at the technical details for this, look at the textbook, which we mentioned in the first 

lecture, namely: An Introduction to Measure and Integration by me. So, we will leave 

these details for those who feel more interested in looking at the details. Next, we will 



 18  

give some equivalent ways of describing the set, mu star of E. Mu star of E can be also 

written as infimum of mu star of A, where A belongs to S of A and all E are inside A. 

So, look at all elements from the sigma algebra generated by A, which include that set E. 

Look at the mu star of A and take the infimum of them. So, in some sense, mu star of a 

set can be approximated by sets from elements of S of A and a similar result is true for 

elements, which are measurable sets. So, these are technical things and facts, which we 

will not prove. Most probably, we will not be using them in our course, but it is nice to 

know the relation between mu star of E and mu star of sets in the sigma algebra S of A 

and S star of A. 

(Refer Slide Time: 35:28) 

 

Here is another fact which again we will not be proving and most probably we will not 

be using, namely: that for every subset E in X, you can find a set in the sigma algebra S 

of A; the sigma algebra generated by A, such that the set E is a subset of F. So, F, which 

includes E and the outer measure of the two are same and that in turn implies that outer 

measure of F minus E is 0 So, essentially it says for every set E contained in X, there is a 

set in the sigma algebra S of A, such that the difference is got outer measure 0. Such a set 

is called a measurable cover of E because F covers E. and a similar result for a set that is 

inside. If E is in X, then you can find a set K inside E, such that the difference mu star of 

E minus K is 0. Such a set is called a measurable kernel of E So, given any set E, there is 

a cover by a measurable set. There is a smaller set inside, which is a kernel and 

difference is sets of a measure is 0. So, these things we will not prove. 
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(Refer Slide Time: 36:57) 

 

We will prove a result, which we will need later on. That relates the outer measure with 

measure of the set inside the algebra that we have started with. We start with a measure 

mu on algebra A of subsets of a set X. Let, mu star be the induced outer measure. 

Suppose, we have got a set E, such that mu star of E is finite. This set need not be in the 

sigma algebra. So, take any set E, such that mu star of E is… so, we do not need this 

condition that E should be a measurable set. So, take any set, whose outer measure is 

finite and then given any epsilon. You can find a set in the algebra A, such that mu star 

of E symmetric difference that set F epsilon is less than epsilon. So, this is a very nice 

result which says any set of finite outer measure, as I said, this is I mentioned is not 

there; it is not needed for any - it is a typo - for any set of finite outer measure, you can 

find a set in the algebra, such that mu star of E symmetric difference. So, the measure of 

the symmetric difference is small. 
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(Refer Slide Time: 38:25) 

 

Let us look at a proof of this result. So, what we are saying is- let us take a set E 

contained in X with the condition that mu star of E is finite. It says, given epsilon bigger 

than 0, there exists a set F epsilon belonging to algebra, such that mu star of E symmetric 

difference with F epsilon is less than epsilon. Let us see, what we were saying. We were 

saying that, this is the set E and it says given a set E with the condition that mu star of E 

is finite. 

I can find a set, call this as F epsilon such that, what is the symmetric difference? 

Symmetric difference is E minus and F minus. So, that is the portion and this portion 

(Refer Slide Time: 39:29) is F epsilon symmetric difference E. So, it says these are 

common portion and it says, outer measure of the sets, which are outside the common 

portion is small. Essentially, almost you can say that E and F epsilon are same. 
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(Refer Slide Time: 40:01) 

 

So, let us prove this property. Let us observe that mu star of E is finite. What is mu star 

mu star of E? If you recall, mu star of E is equal to infimum of sigma mu of Ai i equal to 

1 to infinity, where this Ai is the union of Ai’s cover the set E and Ai’s in the algebra. 

So, this being finite, given: epsilon, a small quantity bigger than 0. There exists a 

covering for sets Ai belonging to the algebra, such that E is contained in union of Ai’s 

and mu star of E, which is infimum plus the small number is bigger than sigma mu of 

Ai’s and that is by the definition of the infimum; infimum is finite. 

Note, because this is finite, it implies that the series i equal to 1 to infinity mu of Ai is 

finite. So, as a consequence of this, there exist some n0, such that the tail of the series, n0 

plus 1 to infinity mu of Ai is less than epsilon by 2. That is because the series is 

convergent. 
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(Refer Slide Time: 41:59) 

 

Once that is done, let us define the set F epsilon to be equal to union of Ai i equal to 1 to 

the stage n0. Note: this set belongs to the algebra because it is a finite union of elements 

in the algebra and it belongs to the algebra. So, let us look at the set E minus F epsilon. 

What is that? That is E minus union i equal to 1 to n0 Ai. Now, the set E is contained in 

union i equal to 1 to infinity Ai. This is contained in this minus union i equal to 1 to n0 

Ai. 

So, I can say this is contained in union i equal to n0 plus 1 to infinity of Ai. So that 

implies mu star of E minus F epsilon is less than or equal to mu star of the set union i n0 

plus 1 to infinity Ai and is sub additive. So, (Refer Slide Time: 43:30) this was subset of 

this. So, mu star of this is less than or equal to… by monotone property and by sub 

additive property this is less than or equal to sigma i equal to n0 plus 1 to infinity mu star 

of Ai. If you recall, we have less than epsilon by 2. So, we get that mu star of E minus F 

epsilon is less than epsilon by 2 
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(Refer Slide Time: 44:04) 

 

So, we get that mu star of E minus F epsilon is less than epsilon by 2. Let us also 

compute the measure of the other part, namely: We also want to compute mu star of F 

epsilon minus E. We want to compute, what is this equal to? F epsilon minus E is union i 

equal to 1 to n0 Ai minus E. Note: This is a subset of union of i equal to 1 to infinity Ai 

minus E. E is a subset of this and that implies mu star of F epsilon minus E is less than or 

equal to mu star of this. So, that is, sigma i equal to 1 to infinity mu of Ai minus mu star 

of E. 

If you recall the way we started, we had summation mu star of Ai. This relation (Refer 

Slide Time: 45:15) says, sigma mu of Ai minus mu of E is less than epsilon. So, we 

could have started with by epsilon by 2 and then we have got this is less than epsilon by 

2. So, we are getting that mu star of F epsilon minus E is less than epsilon by 2. 
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(Refer Slide Time: 45:40) 

 

We have already shown that on that mu star of F minus E epsilon is less than epsilon by 

2. So, putting these two together, we call this as 1 and call this as 2. so, by putting 1 and 

2 together, mu star of E delta F epsilon is less than are equal to mu star of E minus F 

epsilon plus mi star of F minus E and both of them are less than epsilon by 2 plus epsilon 

by 2, which is equal to epsilon. 

(Refer Slide Time: 46:20) 
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So, that proves the required property, which we wanted to prove, namely: that given 

epsilon bigger than 0. There is a set F epsilon, which is in the algebra A, say that mu star 

of E delta F epsilon is less than epsilon. 

(Refer Slide Time: 46:43) 

 

So, this is an approximation property, which we will be using later on to prove some 

facts. So, this is the process of extension theory. The process of extension theory gives us 

ways of constructing triples, which are measure spaces. At this point, it is worth 

mentioning there are measure spaces of importance in other subjects, called probability 

theory.  

A measure space X, S, mu, where mu of X is 1, that is, totally finite measure and mu of 

the whole space is equal to 1 and is called a probability space. The measure mu is called 

a probability. So, a measure space, where mu of X is one; is called a probability space 

and mu is called a probability. 

The reason for this terminology is such triples play a fundamental role in axiomatic 

theory of probability. Whenever you want to describe a phenomena - a statistical 

phenomena which depends upon some randomness, one has to construct a probability 

space to analyze it. So, this gives a mathematical model in the theory of probability to 

analyze statistical experiments. 
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(Refer Slide Time: 48:08) 

 

So, let me give you a few things more, the set X denotes in the triple X, S, mu. X 

represents the set of all possible outcomes of the experiment. For example, you are 

tossing a coin and all possible outcomes are head or tail. You are throwing a die and 

there are six possible outcomes: the number 1, 2, 3, 4, 5, 6. You are observing the 

temperature of a particular place every day at a particular time; the observation will be a 

real number. 

So, in any particular experiment, all possible outcomes of that experiment constitutes a 

set. That is the set X and all the sigma algebra S, represents the collection of events of 

interest in that experiment. So, any subset of the set of outcomes in the experiment is 

called an event. So, for example, when you are tossing a coin, there are two outcomes 

possible: head and tail. If you look at the singleton h, that is, an event when you toss 

head can come or a tail can come. If you are throwing a dye, then the outcomes possible 

are 1, 2, 3, 4, 5, 6. Look at the subset 1, 3 and 5 of X, the set of all odd outcomes. So, 

when you throw, it is possible to find out whether that event has occurred or not. It 

means, whether the outcome was an odd number or not. So, that is a subset of set of all 

possible outcomes. 

In general, when you want to describe its statistical experiment, one has to construct a 

class of subsets of that set X of interest that one requires because of mathematical 

considerations that class would be a sigma algebra. So, the sigma algebra represents the 



 27  

collection of events of interest in that particular experiment. Finally, for every event E of 

interest, you want to assign the possibility of that event happening or the probability of 

that event taking place. 

So, a probability is a measure defined on the sigma algebra of all possible event of 

interest in taking non-negative values and of course, probability of the whole space, the 

chance of the whole space happening is 1 and probability of the empty set is 0. So, the 

probability is a set function defined on the collection of all events of interest. We want 

that to be a measure. So, that is the reason that the triple X, S, mu is called a probability 

space. It gives a mathematical model for analyzing statistical experiments, when mu of X 

is equal to 1. 

So, in today’s lecture, we have constructed measure spaces. From the next lecture 

onwards, we will specialize this measure space, when X is real line. It gives an important 

example of measure space and a measure called Lebesgue measure. So, we will do that 

in the next lecture. Thank you. 


