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Good morning. My name is Inderkumar Rana. I am Professor in the Department of Mathematics, 

IIT, Bombay. I will be taking you through this course on Measure and Integration. This is a 

course which is normally taught at masters level M.Sc. in Mathematics, and sometimes in 

departments like Physics, Electrical Engineering also. So, let us go through the basic objectives 

of this course. This course is called Measure and Integration. This also goes by various names 

such as Real Analysis, Advance Real Analysis and so on.  

The aim of this course - the objectives that will we covering in this course are as follows: 

(Refer Slide Time: 01:14) 

 

So, the aim is to generalize the concept of length, area, volume, etc., to abstract spaces. That 

leads to the notion of Lebesgue measure on Euclidean spaces and general concept of measures 

on general spaces. Then, also we will extend the notion of integration which is normally done in 



UG levels called Riemann integration, to more general settings. That leads to the notion of 

Lebesgue integral and other notions of abstract integration. So, these are the basic sort of outline 

of the course that we are going to follow.  
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We will be following the text book, “An Introduction to Measure and Integration” written by me. 

This is published jointly by Graduate Text in Mathematics by an American Mathematical 

Society. Indian edition of this is available through Narosa Publishers, New Delhi.  
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So, why is Lebesgue integration needed and what is the need for extending the notion of 

Reimann integration? There are some problems, drawbacks of Reimann integration. To study 

about them, you should look at chapter 1 of the text book I have mentioned. We will not have 

time to go through these drawbacks of Reimann integration and how efforts which are made to 

remove these drawbacks led to the development of Lebesgue measure, Lebesgue integration and 

so on.  

So, for these, we refer chapter 1 of the book. Historically, this was developed by the French 

Mathematician Henri Lebesgue, who published as a part of his PhD thesis in 1902 Integral, 

Longueur, Aire. Then this was developed further into the abstract spaces by various 

mathematicians in 19th and 20th century, some of them being Emile Borel, Caratheodory, Radon 

and Frechet, among others.  
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So, to start with there are some prerequisites for this course, which we shall assume and we will 

hope that you have gone through an elementary course, first course in Real Analysis and you are 

familiar with the properties of the real line, what is real line, what are called open intervals, 

closed intervals, what is a topology on the real line and what are called complex subset of real 

line. So, basic course on Real Analysis is going to be assumed throughout this course. 

So, if you have difficulty in this, look up some elementary book on first course on Real Analysis 

and go through these topics, so that you are you are not left behind and you are able to 

understand what are the things we are going to discuss, concepts we are going to discuss.  

Then, there is one - the basic space of course is real line, but there is a notion of what is called 

extended real numbers, which we are going to use in our course. Since this is not normally 

discussed in most of the text books or in courses in Real Analysis, we will go through some of 

these concepts on extended real numbers. 

So, first of all, what is this set of extended real numbers? (Refer Slide Time: 05:00)  

The set of extended real numbers denoted by R star is the set of real numbers to which we adjoin 

2 new symbols; one is called plus infinity and the other is called minus infinity. Now, once we 

adjoin these 2 new symbols to the set R, we get the extended set R denoted by R star.  



Now, as you all know, the set of real numbers have got algebraic operations of addition, 

multiplication - there is an order on it. So, when we add these 2 new symbols to them, we would 

like to define how these 2 new symbols, these 2 new objects, behave with the respect to the 

original order structure, the original operation of addition, multiplication and so on. So, we are 

going to define what are called operations of additions, multiplication, and order on the set of 

extended real numbers.   

The first one is the order relation. So, we are going to assume or we are going to say that, for 

every real number x in R lies between the 2 new symbols minus infinity less than x strictly less 

than plus infinity. So, this is how the new symbols plus infinity and minus infinity behave with 

respect to the order structure. So, minus infinity in R star is the smallest element and plus infinity 

is the largest element in R star as far is the order is concerned; for real numbers, the same 

original order stays.    

Next, let us look at the algebraic operations on R star.  
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So, for real numbers x and y, we already know what is x plus y, but for infinity and minus 

infinity - the 2 new symbols, how are these operations defined? here are the… (Refer Slide 

Time: 07:00). So, for every x belonging to R, if we add minus infinity to x, we should get minus 



infinity. So, that is the rule. We are specifying how does minus infinity behave with respect to 

addition of real numbers. Similarly, plus infinity plus x is equal to plus infinity; whatever be x, 

positive or negative, when added to minus infinity, you get minus infinity, and when added to 

plus infinity, you will get plus infinity.    

Now, how does infinity plus infinity added to itself?  What is the outcome? 

It says plus infinity plus plus infinity is plus infinity. Minus infinity plus minus infinity is minus 

infinity. Let us specify that plus infinity plus minus infinity is not defined. So, these are the only 

for relations among addition; addition of plus infinity minus infinity with respect to x, plus 

infinity with itself and minus infinity with itself.  
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Next comes, the rules for multiplication: 

For every real number x, x into plus infinity is equal to plus infinity into x is plus infinity, if x is 

non-negative. Similarly, x multiplied by minus infinity is same as minus infinity multiplied by x 

is equal to minus infinity; again, under the condition that x is bigger than 0; more or less, we are 

following the rules of multiplication for real numbers.  



Similarly, if x is negative, we have x multiplied by plus infinity or plus infinity multiplied by x is 

equal to minus infinity, the sign changes of infinity.  

Similarly, x multiplied by minus infinity is equal to minus infinity multiplied by x is equal to 

plus infinity, if x is less than zero.  

So, depending upon whether x is bigger than zero or x is less than zero, the rules for 

multiplication are as specified. Of course, if x and y are real numbers, the multiplication between 

x and y is same as that of real numbers. So, these are the rules for multiplication.  

Of course, there is specific element; this particular element called 0 in the real numbers - how 

does that behave with respect to plus infinity and minus infinity?  

Here are the rules:  

For plus infinity into zero is same as minus infinity into zero is equal to zero; that is same as for 

real numbers also; x multiplied by zero, whether positive or negative is always equal to zero. 

Of course, if I multiply plus infinity with itself, the answer is plus infinity and if minus infinity is 

multiplied with plus infinity, the answer is minus infinity. So, plus minus infinity multiplied by 

plus infinity is plus minus infinity and similarly plus minus infinity multiplied by minus infinity 

is minus plus infinity, the sign changes of the outcome.  

So, these are the rules for addition, multiplication and order structure on the set R star, which is 

nothing but the real numbers along with two new symbols, plus infinity and minus infinity. 
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So, once again, let us specify that the relations minus infinity plus plus infinity and plus infinity 

plus minus infinity are not defined. So, with these rules, we get the set R star of extended real 

numbers, which is also denoted by this square bracket minus infinity comma square bracket plus 

infinity. So, that is essentially something like saying, the real numbers are denoted by the open 

kind of interval minus infinity to plus infinity.  

If you close it upon both sides, that is the notation news for extended real numbers. So, once you 

are familiar with the order, familiar with the addition and multiplication on the extended real 

numbers, we can look at the notion of sequences in real numbers, and also the notion of 

supremum and infimum on subsets of  extended real numbers.    
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So, let us first look at A is a sub set of extended real numbers and let us assume A is nonempty 

set. Now, there is a possibility that A is sub set of real numbers only. Then, we know that the 

completeness property of real number says, if the set A is bounded above, it must have least 

upper bound or namely the supremum.    

Now, in the case A is a sub set of R star is a sub set of extended real numbers, that means there is 

possibility of minus infinity or plus infinity being a part of it. Suppose if it bounded above, then 

it has to be a subset of real numbers and supremum will exist.  

If it is not bounded above, that means plus infinity is going to be a part of it. So, we will define 

the supremum of A to be equal to plus infinity, if A as a part of R is not bounded above. 

Similarly, we will define the infimum of the set A to be equal to minus infinity, if A inter section 

R is not bounded below.  

So, what we are saying is - in the sub set of extended real numbers, a set which is bounded above 

or bounded below does not matter, we do not have to say that. So, every subset, nonempty subset 

of extended real numbers will always have supremum and will have always have infimum. Of 

course, this supremum will be equal to plus infinity if z a is not bounded above, and infimum 



will be equal to minus infinity if it is not bounded above. So, it is a very nice situation; every sub 

set has supremum as well as infimum.  

Now, similar conditions will hold or similar result will hold for limits of sequences in R star. 

(Refer Slide Time: 13:30) 

 

 So, let us look at a sequence xn

Now, if is a sequence is (( )) monotonically increasing and it is in R star, it is a sequence of 

extended real numbers, and not bounded above, that means plus infinity is going to be an 

element of it. So, if it is not bounded above, we will say sequence is convergent to plus infinity 

and write this as equal to plus infinity.    

 which is monotonically increasing and which is not bounded 

above. If you recall, as a sub set, as sequence in real numbers, if a sequence is monotonically 

increasing and is bounded above, then it must be convergent.  

Essentially also, we would say, when xn is sequence of real number which is monotonically 

increasing and not bounded above, in that case also, we write the limit to be equal to plus 

infinity. For a sequence of real numbers, it is only symbolic way of saying that, a monotonically 

increasing sequence not bounded above converges to plus infinity. But, as a sequence in R star, it 

converges to an element of R star namely to as infinity.  



Similarly, the sequence xn in R star which is monotonically decreasing; if it is not bounded 

below, we say, it converges to minus infinity and write this as limit n going to infinity xn

So, this is how we will analyze sequences in R star which are monotonically increasing or 

monotonically decreasing.  

 is equal 

to minus infinity.  
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Similar concepts can be developed for series in R. So, let us just say two things about sequences: 

Because every monotone sequence is convergent, if I look at the sequence, given any sequence, 

look at the supremum of that sequence, from the stage j onwards. So, supremum k bigger than or 

equal to j of xk; then, that gives a new sequence and that sequence will always converge. 

Similarly, the infimum from k bigger than or equal to j xk

So, limit of the supremum, supremum k bigger than or equal to j for that is denoted by limit 

superior of x

 will also converge, because, these are 

monotone sequences and monotone sequences in R star always converge.  

n. Similarly for the infimum k bigger than or equal to j, xk is called the limit inferior 

of the sequence.  



(Refer Slide Time: 16:16) 

 

So, in general, we all know that limit inferior is always less than or equal to limit superior and 

the sequence will converge when limit inferior is equal to the limit superior, even in the case of 

sequences in R star. So, this is how sequences behave.  
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Now, let us look at sequence. From sequences, let us go to concept of series. Suppose xk, k 

bigger than or equal to 1 is sequence in R star, then, let us look at the partial sums of this 

sequence sn; that is, the sum of first n terms of the sequence that is denoted by sn, which is 

summation k equal to 1 to n xk.

One can ask whether this sequence is convergent or not in R star. So, if this series is convergent 

in R star, then, it means if the sequence is convergent in R star, the sum of partial sums in the 

sequence of partial sums - if it is convergent in R star, we say that the series is convergent and 

the limit is called the sum of the series. So, this is basically same as that real line; only keep in 

mind how sequences behave in the real line.    

 So, for every n this is well defined.  

So, with this basic discussion about what is the basic space of the extended real numbers we are 

going to deal with, we start with a proper concept in our subject Measure and Integration.   

The first few concepts are going to be discussions about class of subsets of a nonempty set.    

So, we are going to look at some collection of subsets of a given nonempty set x with certain 

properties. This collection of subsets, which we are going to call as semi algebras, sigma 

algebras and monotone classes are various classes which play an important role later on in our 

subject.  

So, let us start with looking at what is called a semi-algebra of subsets of a set X.  
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Let X be a nonempty set and let C be a collection of subsets of that set X. We say that the class C 

is a semi-algebra of subsets of X, if it has the following properties, this collection C has the 

following properties: 

One: The empty set and the whole space are members of this class X. So, the first property 

desired of C is that, the empty set and the whole space X are members of this class.  

The second one is that, this class is closed under intersections; that means, if A and B are two 

elements of this collection, then the intersection of these sets A and B should also be a member 

of the class C. So, this class C is closed under intersection; that is the second property.  
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There is a third property which we will describe soon. That is saying that, this class need not be 

closed under compliments, but will require additional properties. So, let me write that property 

and explain because, it is best understood when it is written. 
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So, X is nonempty set, C is collection of subsets of the set X. The first property we said empty 

set and the whole space belong to C and second property was - if A and B belong to C, then that 



implies A intersection B belong to C and third property which is very crucial is that, if A belongs 

to C, then that implies, the set, look at the set A compliment - that need not be in C, but we want 

to say, you can write C as union of elements ci finite number of them, i equal to some 1 to n such 

that ci’s are elements of C and they are pair wise disjoint; ci intersection cj

So, let us just go through these concepts again. A collection C in P X having the following 

properties: 

 is empty.  

 one:  The empty set - the whole space are elements of it.  

If A and B belong to it, then, the intersection of these 2 sets namely A intersection B is also an 

element of this collection C.  

The third property is - if A is a subset of C, then A compliment, the compliment of this set in X 

of course, should be representable as well as union of ci’s i equal to 1 to n, where the ci’s are 

elements of c and they are pair wise disjoints. So, this property that ci intersection cj

Let us look at some examples, to get familiarized with this notion of semi-algebras.  

 is nonempty 

for i not equal to j. We just say, they are pair wise disjoint. So, such collection C is called a semi-

algebra of subsets of X.    
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So, let us take X - any nonempty set. Let us take the collection C to be equal to all subsets of X; 

so, P of X. What is P of X? That is a power set of X. So, normally this is called the power set of 

X which is same as all subsets of X. So, C is the collection of all subsets of X.  

Do you think it is closed under…. So, do you think phi and X belong to C? Obviously, it is a 

collection of all subsets. So, phi and X belong. Obviously, A intersection B also belongs to it if A 

and B belong to C. Because, if A and B are subsets of it, then, naturally A intersection B also is a 

subset. In fact, if A belongs to C, then that implies A compliment also belongs to C because, A 

compliment itself is a subset of X. So, A compliment belongs to P X, it is a subset of X, so 

belongs to P X which is C. So, the collection of all subsets of the set X is an example, which is 

an obvious example of a semi-algebra of subsets of a set X.  

Let us look at some more examples. This was an obvious example. So, let us look at the second 

example. 

(Refer Slide Time: 25:29) 

 

Let us look at X equal to real line and let us take the collection C, all intervals in R. So, we are 

looking at the collection of all intervals in R- that is the collection C.  



So, first property - is empty set a member of C? Well, here we will have to understand, of course 

yes. One way of looking at it is - empty set can be written as the open interval, a comma a, for 

any point a belonging to R and that is a interval; so, that belongs to the collection C.    

Second property: Let us take 2 intervals I and J belong to C. So, does this imply the intersection 

I, intersection J belong to C? So, that is the question. That means, if I and J are two intervals, can 

i say, I intersection J is also an interval? Let us check in the picture.  

Let us take 2 intervals I and J. So, let us say, here is the interval I and here is the interval J (Refer 

Slide Time: 25:28). So, one possibility is that they are disjoint from each other. So, here I 

intersection J is empty, hence, belongs to C.  

What is the other possibility? Other possibility is let us take the intersect. So, here is my interval 

J (Refer Slide Time: 25:56) and here is my interval I (Refer Slide Time: 25:59). Then what is 

intersection of these two? So, this is I and that is J (Refer Slide Time: 26:05), that is my 

intersection of I and J, and clearly, that is also, I intersection J is also an interval. So, it belongs.  

So, two cases: case one - when there is disjoint empty set, intersection is empty set and belongs 

to C. If they overlap, then the overlap itself is again an interval and that belongs to C. So, it is 

quite clear that this collection of all intervals is closed under intersection also.  
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Let us look at the third property which is crucial, and that says, if I take an interval I, the third 

property that we want to verify is - if I is an interval, I should look at the compliment of that 

interval and should be able to write it as union of ci i equal to 1 to n, where ci belong to C, and ci 

intersection cj

So, once again, let us look at an interval. So, let us look at an interval say, open interval a and b 

(Refer Slide Time: 27:23). So, that is my interval. So, what is going to be the compliment of 

this?   In fact, the compliment of this looks like two paces, one is this side, other is this side. so 

this pace and this pace (Refer Slide Time: 27:36). So, for this, I can write that, the compliments  

R minus a b is equal to minus infinity to a in close union b to plus infinity. So, this is this part 

and this is this part (Refer Slide Time: 28:00). 

 is empty for i not equal to j.    

So, if I take an interval I, that is I compliment, where I is the interval a to b, then its compliment 

is a disjoint union of 2 elements. 

(Refer Slide Time: 28:22) 

 

Similar cases we will follow. If for example, a is left open or right close, let us write R if it is of 

the type this (Refer Slide Time: 28:27), then I can write this as this point a is enclosed. So, minus 

infinity to a, the compliment will be this (Refer Slide Time: 28:35) open here and union b to plus 



infinity. Similarly, the other cases. So, I will say and you write down yourself. So, we verified C, 

the collection of all intervals in R is semi-algebra of subsets of real line.    

 Let us look at some more examples. Let us look at example number 4.  
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 Let us take the set X to be equal to R 2 and C is the collection of all rectangles in R 2. So, let us 

just look at the picture and try to understand. So, here is R 2(Refer Slide Time: 29:50).  Can I say 

empty set is a rectangle? Of course, empty set can be written as, a comma a cross a comma a, if 

you like. It does not matter. You can also write as, a comma a cross c comma d. In both cases, it 

is the empty set or any other such representation. So, empty set is an element of the collection of 

all rectangles in the plane.  
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What about the whole space X that is R 2? of course that is R cross R and R is a rectangle sorry  

R is an interval. So, R is an interval which we write normally as minus infinity to plus infinity. 

So, empty set is an element of it, the whole space is an element of it.  

Let us take 2 rectangles and see (Refer Slide Time: 31:00) whether the intersection of these two 

rectangles is also…. Let us take one rectangle here and another rectangle. The possibilities are - 

they do not intersect; in case they do not intersect, then there is nothing to prove because, the 

intersection is an empty set which is already a rectangle.  

Let us take a rectangle which intersects with earlier rectangle. So, we are taking 2 rectangles  say  

R1 and  R2. We want to check whether R1 intersection R2 is a rectangle or not a rectangle. The 

picture is quite clear that R1 intersection R2 is this rectangle. So, R1 intersection R2

One can write down formal proof by writing this to be equal to a, b, c and d and so on (Refer 

Slide Time: 32:00), but that is not necessary, once we understand from the picture that 

intersection of two rectangles is again a rectangle.    

 is a 

rectangle.    

Of course, let us verify the third property - can I the represent the compliment of a rectangle as a 

finite disjoint union of rectangles.  
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Let us take a rectangle. So, let us take a rectangle in the plane. So, this is a rectangle R, and I 

want to write R compliment. I want to see, what does it look like. Can I represent this as a finite 

disjoint union of rectangles, again? 

Well. Let us obviously in the picture I can try to do as the following: I can draw lines passing 

through the sides (Refer Slide Time: 33:00) and I can draw another line passing through this. 

Then, it is quite clear that this is compliment of R. So, this was the set rectangle R (Refer Slide 

Time: 33:20) and its compliment is nothing but a rectangle R1, a rectangle R2, rectangle R3, 

rectangle R4, rectangle R5, R 6, R 7 and R8. Of course, these are rectangles R1,R2, R3, R4, R5, R 6, 

R 7 and R8.

So, this is R

   

5 

So, I can write it as union of R

(Refer Slide Time: 33:48) and this is, this part is.. (Refer Slide Time: 33:52). There 

are many ways of… So, I am looking at these whole infinite. I can look at this whole infinite, 

this side and this corner as a rectangle and this part (Refer Slide Time: 34:00) as a rectangle.  

i, i equal to 1 to 8, where Ri intersection Rj is empty. So, it is a 

matter of writing down the details, that depending on R whether which part of boundary is 

included or excluded. Accordingly, I can make these rectangles Ri’s to be disjoint.  



So, this is true that the compliment of a rectangle in the plane is also a rectangle. So, that means 

what? It says that the collection of C of all rectangles in R2

We have given lot of examples of objects which are semi-algebras of subsets of X. 

 is also a semi-algebra of subsets of 

X.  

Now, let us go to a next stage of understanding, extending this concept of semi-algebra, to what 

is called an algebra of subsets of the set X.  
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So, let X be a nonempty set and a collection F of subsets of X with the following properties: 

One: Like semi-algebra, the empty set belongs to it, the whole space belongs to it, and of course, 

there is another property. So, let us better write this. 
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X is a nonempty set; F is a collection of subsets of X with the following properties:  

One: If empty set and the whole space belong to F like that in semi-algebra;  

 Secondly we are going to look at the intersection property - if A and B belong to F, their 

elements of F, then that implies their intersection also belongs to F. 

Of course, third property namely, in the case of semi-algebra, if I take element f in F, then its 

compliment need not be F, but we were able to represent finite disjoint union of elements of that 

class. But in algebra, in the new concept, we are demanding - this implies, A compliment also 

belongs to F. In these cases, we say F is an algebra of subsets of X. So, this is called an algebra 

of subsets of X.    

So, how does the algebra differ from a semi-algebra?  

This property (Refer Slide Time: 37:12) that is always true for algebra as well as semi-algebra. 

This property (Refer Slide Time: 37:17) true for algebra as well a semi-algebra. This property 

(Refer Slide Time: 37:21) may not be true for a semi-algebra. In that case, we will call as we 

said, A compliment is a finite disjoint union of elements of F, and here (Refer Slide Time: 37:37)  

we are saying, A compliment itself is an element of F.  



So, let us look at some examples of this again, to understand. 

(Refer Slide Time: 37:45)  

  

So first observation: Of course, every algebra is also a semi-algebra, because, the third property 

that we looked at namely in a semi-algebra, one would like to have A compliment to be a disjoint 

union of elements of F. In an algebra, it is itself in F; so is much stronger. So, every algebra is 

also a semi-algebra.    

Let us note, when X was equal to R and C is equal to class of all intervals, we showed that C is a 

semi-algebra.    

That question, “is C an algebra?” Obviously, the answer is no.  

For example, I can take an interval, any non-degenerate interval say, a to b (Refer Slide Time: 

39:00). Let us take this interval a to b that is by I. So, I belongs to C, but I compliment is not an 

interval, because, I compliment is nothing but minus infinity to a union b to plus infinity.  

So, when I belongs to C, I’s interval is compliment. It need not be an interval, in general. So, that 

implies that this collection C is not an algebra.  

So, let me emphasize again. Here, property one says, every algebra is also a semi-algebra (Refer 

Slide Time: 40:00) and this (Refer Slide Time: 40:02) says, every semi-algebra need not be an 



algebra; means, there are examples of collection of subsets of sets. For example, in the real line, 

the collection C of all intervals is a semi-algebra, but it is not an algebra.    

So, the collection of subsets is an algebra, is a much stronger property  says concept than that of 

a semi-algebra.  

(Refer Slide Time: 40:37)    

 

Let us look at some more examples. Let us look at the example, same example of X is real line. 

C is all intervals. You know that this collection is not an algebra; it is a semi-algebra.  

Let us write, F to be the collection of all subsets of the real line, such that look at this collection 

of all intervals. It was not algebra because, the compliment of an interval need not be an interval, 

but it looked like it is a union of two disjoint intervals. So, let us write, where E such that E 

compliment is equal to a union of intervals Ii, i equal to 1 to 2, where Ii intersection Ij

So, what we are saying, look at all those subsets of real line, which can be represented as  

disjoint union (Refer Slide Time: 42:00) of two intervals. So, claim F is algebra. We claim that, 

this is algebra of subsets of R.    

 is equal to 

empty.  



Let us first observe, make some observations namely C is a sub set of F because, if I take an 

interval, then it has this property, namely it is a disjoint, its compliment is a disjoint union of two 

intervals. So, C is part of subsets of X. So, this as a consequence implies empty set in the whole 

space belong to F. 

Let us look at the second property. Let us look at two elements (Refer Slide Time: 43:00). So, let 

us call E1 and E2 belong to R. oh sorry, E1 and E2

You want to check whether E

 are elements of C.    

1 intersection E2 belong to C or not. So, what is E1? Because E1 

belongs to C implies E1 compliment can be written as a disjoint union. So, this square bracket 

normally indicates that I am writing something as disjoint union. So, I11, I equal to 1 to 2, or let 

us just simply write it as, this union of two intervals  I11 union I21, where both of these are 

disjoint. Similarly, two compliments can be written as a disjoint union. Let us call J11 union J21 

because, J1 and J2 

(Refer Slide Time: 44:29)  

are disjoint.  

  

Now, we want to look at E1 intersection into E2. We want to look at E1 intersection E2 and we 

want to check whether this belongs to C or not. That means what? I should look at E1 

intersection E2 compliment, and try to represent that as a union of  two intervals. So, this is equal 



to E1 compliment (Refer Slide Time: 45:00), there is intersection. So, by De Morgans law that 

becomes E2 

Now, this is same as E

compliment.  

1 compliment is nothing, but  I11 union I21 union E2 compliment; that is,  

J11 union J2

So, let us modify our arguments. 

2. From here, these two are disjoint, these two are disjoint, but all of these 4 may not 

be disjoint. (Refer Slide Time: 45:37) So, this set of ideas seems not leading us to claim that F is 

an algebra subsets of X.  

(Refer Slide Time: 46:13) 

 

Instead of checking this second one - whether the intersection belongs to it (Refer Slide Time: 

46:00), let us look at the third property that we want there - that is true or not. So what is the 

third property? That property said, if a set E belongs to C.  

We want to check algebra. Let us look at E belongs to F; does that imply E compliment belongs 

to F?  

So, let us take a set E belonging to F. Now, what is E compliment? E compliment looks like a 

finite disjoint union of elements because, E belongs to it, it is a disjoint union of two elements. 

So, E compliment is equal to E compliment is I union J.  



So it seems to say that, if I can show that the collection of finite disjoint union (Refer Slide Time: 

47:12), this F is close under union, then I may be through. So, we modify all our arguments again 

and see, how do we proceed. This is how, one does not get all the time, a polished proof in 

mathematics; one has to modify the arguments. So, I modify my arguments to prove that F is 

algebra as follows:  

So, the first step; let us keep in mind what we are trying to do. 

(Refer Slide Time: 47:44) 

 

So, here is a collection F of subsets of X. Now, subsets of real line which are union of two of 

them, but that seems to complicate the issue. So, instead of this, let us modify this definition of F 

itself and let us look at the modified version of this example. 



(Refer Slide Time: 48:04) 

 

 X is real line. Let us look at F - the collection of all those subsets E of R, such that, instead of 

seeing E compliment is union of two disjoint intervals, let me just write, E compliment is equal 

to a finite disjoint union of intervals Ij

Now, let us observe, keeping in mind our previous arguments that C, the collection of all 

intervals is a part of F. So, that implies that empty set in the whole space are members of F. 

 j equal to 1 to n, where Ij is R intervals and they are pair 

wise disjoint, and that is already indicated by writing this square bracket.  



(Refer Slide Time: 48:55) 

. 

Second: Now, if E and F belong to this collection, then what is E?  

E is a disjoint union of intervals. So, let us write E1 union E2 as, E1 is a disjoint union, so let us 

write E1 as union of Ij, j equal to 1 to n disjoint union of Jk,

Now, this collection of sets intervals are disjoint, this collection of intervals are disjoint, but all 

of them may not be disjoint; that does not matter much. (Refer Slide Time: 49:47). I can write 

this as union over j equal to one to n, union over k equal to one to m of I

 k equal to 1 to m.    

j intersection Jk

So, what I am doing is I am intersecting. So, the basic property is, if two intervals are not 

disjoint, then I can write them as union of disjoint paces. So, this collection of intervals, (Refer 

Slide Time: 50:22) the union of interval which may be over lapping, but I can intersect one  

another and write this as a disjoint union. So, these pairs of intervals will be disjoint; that 

implies, this will imply that if E and F belong to F, then that implies E union F also belongs to F. 

So, this collection of finite disjoint union of intervals is closed under unions. 

.  



(Refer Slide Time: 50:54) 

 

Let us write finally that, if E belongs to F, then that implies by definition, E compliment is 

disjoint union of intervals and each Ij is a interval, so, it belongs to F. Just now, we proved that it 

is closed under unions. So, this implies this also belongs to F.    

So, the collection of sets of the real line which are finite disjoint union of intervals have the 

property; C is a sub set of it if; E and F belong to it. Then, it is closed under unions and also 

closed under compliments.   



(Refer Slide Time: 51:50)  

 

Now, it is a simple matter for us to check that these two properties - whenever a collection of sets   

is closed under unions E f belonging to F we showed, implies E union f belongs to it and also 

(Refer Time: 52:00) E belonging to F implies E compliment belongs to F, but these two 

properties imply that E intersection F also belongs because I can write this as, E as E compliment 

compliment union because, what is compli[ment] if you like this intersection of E F   

compliment compliment and that I can write as E compliment union F compliment compliment.    

Simply it is just saying that, because this is De Morgan laws, this will give you E compliment 

compliment intersection.  

Now E belongs to F. So, this belongs to F, this belongs to F, this union belongs to F and 

compliment belongs to F. So, this belongs to F (Refer Slide Time: 52:50). 



(Refer Slide Time: 52:58)  

 

So, basically in an algebra, if F is an algebra, then saying that it is closed under unions and 

compliments is equivalent to saying it is closed under intersections and compliments.    

So, let us just summarize what we have done today. 

We started by looking at our course, Measure and Integration and a set the underlying set of real 

numbers need to be extended to a larger class namely the set of extended real numbers. There we 

defined the notion of order, addition and multiplication and analyzed how sequences, series do 

and supremum of sets behave there. Then, we started at looking at collection of subsets of a set X 

with some properties.  

First thing we looked at was - what is called semi-algebra of subsets of X, namely it is a 

collection of objects subsets of the set X with the property empty set and a whole space belong to 

it; it is closed under an intersection and the compliment of any set in this collection is 

representable as finite disjoint union of elements of that collection again. A typical example was 

that of all intervals in that real line.    

Then we looked at slightly stronger concept namely the algebra. An algebra of subsets of a set X 

which we defined as the collection with the properties - empty set in the whole space belong to it  



it is closed under intersections and also closed under compliments. Then we made a remark - 

every algebra is a semi-algebra. The collection of intervals in the real line form a semi-algebra, 

but does not form an algebra.  

We showed how to construct an algebra out of these intervals namely we looked at the collection 

of all finite disjoint unions of this intervals, and that collection we proved - it is an algebra of 

subsets of it.  

So, we will continue analyzing such a collection of objects in our next lecture.  

Thank you.    


